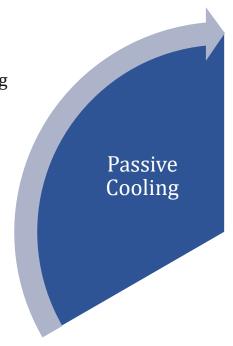


Investigation of Helical Oval-Twisted Tube HX/SG Dynamic Performance Using RELAP5-3D

Scott Wahlquist*, Ahmed Hamed**, Piyush Sabharwall**, George Mesina**, Palash Bhowmik**, Amir Ali*+**

*Nuclear Engineering Dept., Idaho State University, 921 S. 8th Ave., Pocatello, ID 83209 †Center of Advanced Energy Studies (CAES), 995 MK Simpson Blvd, Idaho Falls, ID 83401 **Idaho National Laboratory, 2525 Fremont Ave., Idaho Falls, ID 83415

Innovating Current HX/SG for SMR Applications


How to design a better HX?

Positives

- Potentially eliminates external driving mechanisms (cost reduction)
- Enhances safety features

Negatives

- Slower thermal response to power fluctuations and flow instabilities
- Situation-dependent reliability

Positives

- Plenty of enhancement options available (active and passive) methods
- Can greatly improve thermal efficiency
- Can reduce fouling buildup

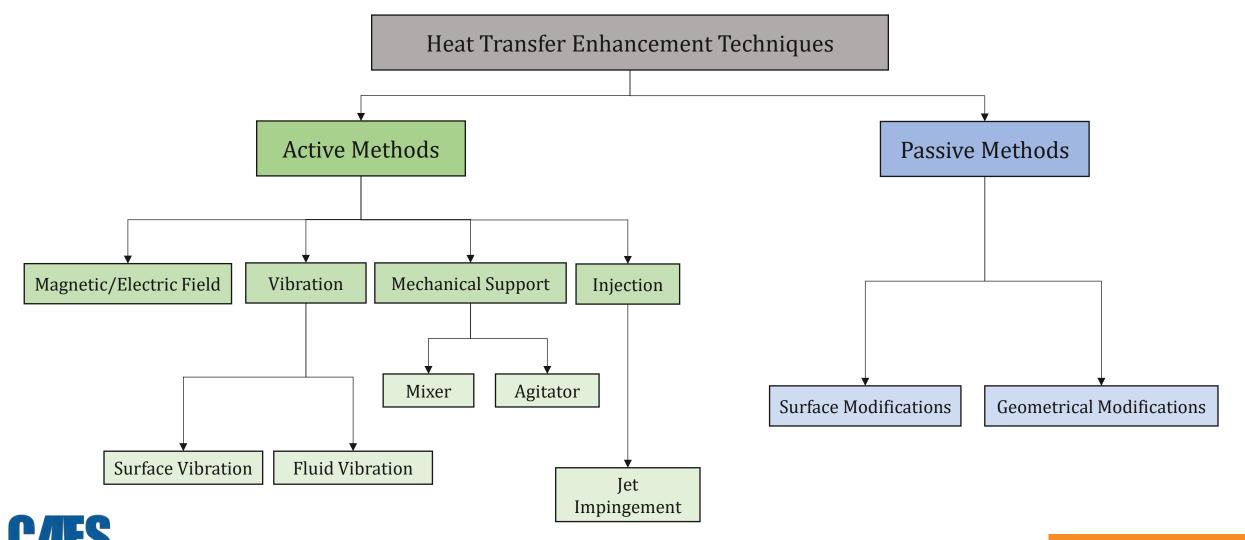
Negatives

- May require additional fabrication costs
- Enhancement technique may increase equipment fallibility and shorten lifespan

Positives

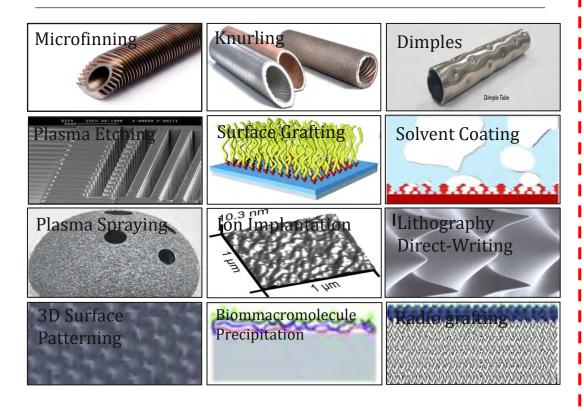
- Larger surface area per unit volume
- Lower capital cost and footprint
- Relatively higher thermal performance

Negatives


- Small flow passages (increased ΔP)
- Higher chance of fouling buildup

Energy Studies

Innovating Current HX/SG for SMR Applications



Innovating Current HX/SG for SMR Applications

SURFACE MODIFICATIONS:

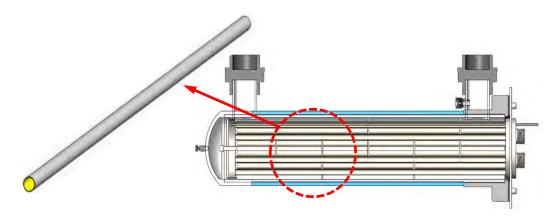
Surface Modifications:

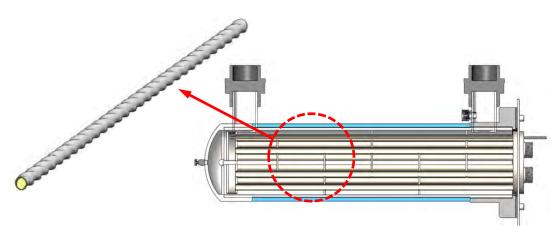
Seek to improve conduction between wall and fluid.

CAES :

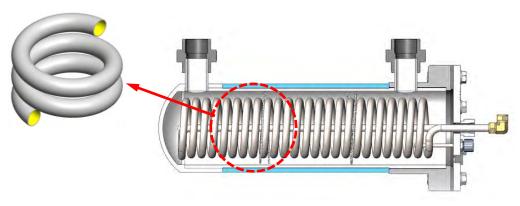
Geometrical Modifications:

Seek to improve convection and localized turbulence.

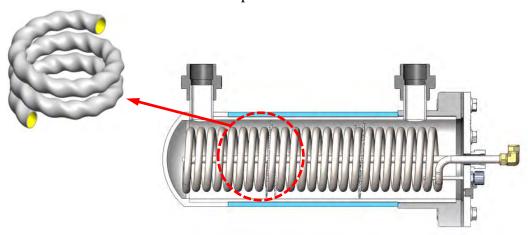

GEOMETRICAL MODIFICATIONS:


Center for Advanced Energy Studies

Innovating Current HX/SG for SMR Applications


Straight circular tube - Shell and Tube HXs

Standard steam generator unit


Oval twisted tube - Twisted tube HXs

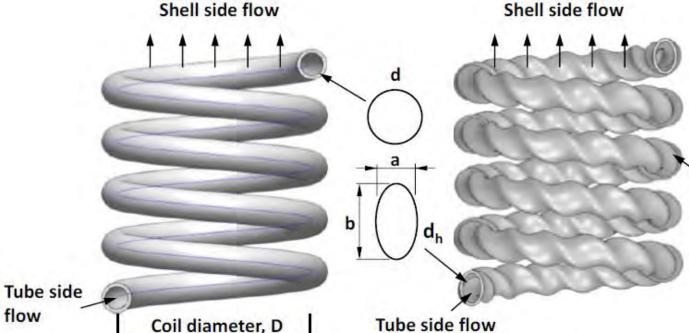
Enhanced heat transfer from swirling vortices induction

Helical tube - Helical Coiled HXs

- Enhanced heat transfer from secondary flow
- Increased compactness

Oval twisted-helical tube - Twisted-Helical HXs

- Enhanced heat transfer from combination of secondary flow and swirling vortices induction


 2025 Internat
- Increased compactness

H-OTSG: **Helical Once-Through Steam Generator**

OTHCHX: Oval-Twisted Helical Coil Heat Exchanger

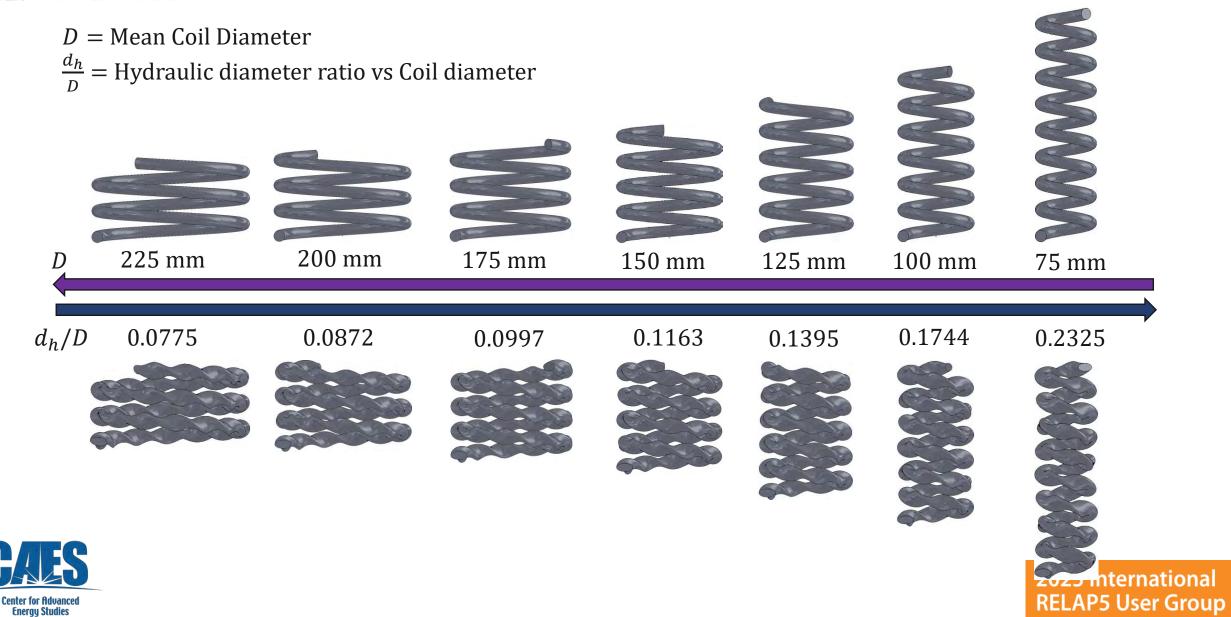
Shell side flow

Turbulence Model - Low Re k-ε Model:

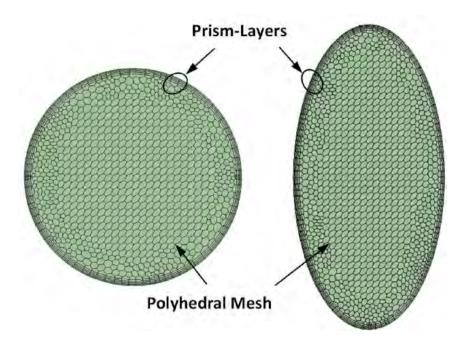
The Low $Re \ k-\varepsilon$ model best matches experimentally derived correlations in the literature for H-OTSG

$$\rho \frac{\partial k}{\partial t} + \rho \, \boldsymbol{u} \cdot \nabla k = \nabla \cdot \left(\left(\mu + \frac{\mu_T}{\sigma_k} \right) \nabla k \right) + P_k - \rho \varepsilon$$

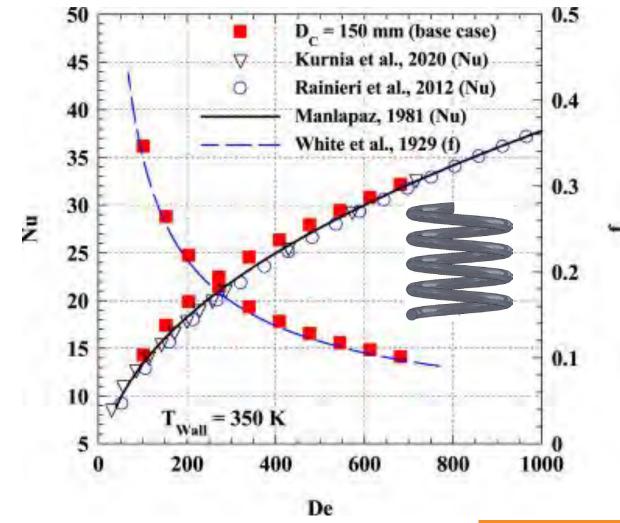
$$\rho \frac{\partial \varepsilon}{\partial t} + \rho \, \mathbf{u} \cdot \nabla \varepsilon = \nabla \cdot \left(\left(\mu + \frac{\mu_T}{\sigma_{\varepsilon}} \right) \nabla \varepsilon \right) + C_{\varepsilon 1} \frac{\varepsilon}{k} P_k - f_{\varepsilon} C_{\varepsilon 2} \rho \frac{\varepsilon^2}{k}$$


Oval-Twisted tube

Parameter	Value	Units
Tube diameter or hydraulic diameter, $d\ or\ d_h$	17.44	mm
Coil mean diameter, D	75-225	mm
Oval-aspect ratio, a/b	2	
Coil pitch, P	40	mm
Coil height, H	113-336	mm
Coil length, L	2000	mm

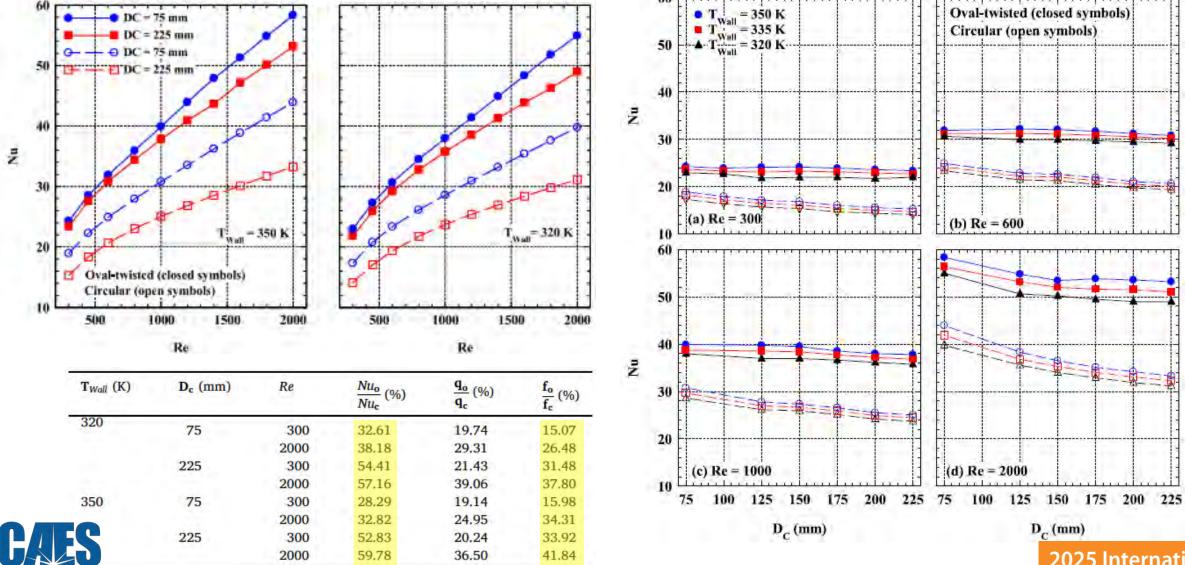


flow



	Normal, h_3	Finer, h_2	Extra-fine, h_1
Number of Cells	1471090	2955594	5911299
Nu	28.62	27.87	27.95
GCI_{fine}^{21}	<mark>0.05%</mark>		
ΔP (Pa)	53.77	54.26	55.64
GCI_{fine}^{21}	1.59%		

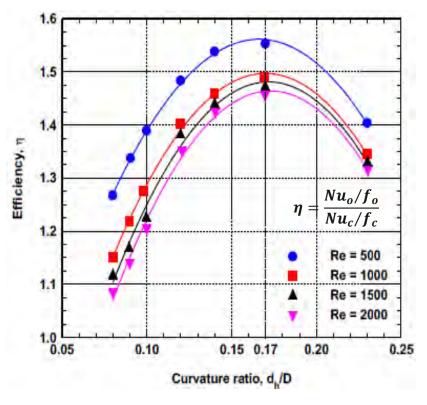
Wahlquist et al., 2025, "Development of novel oval-twisted helical tube once-through steam generator: Part I: Single-phase laminar flow," Prog. Nucl. Eng., 183, 105667.


Center for Advanced Energy Studies

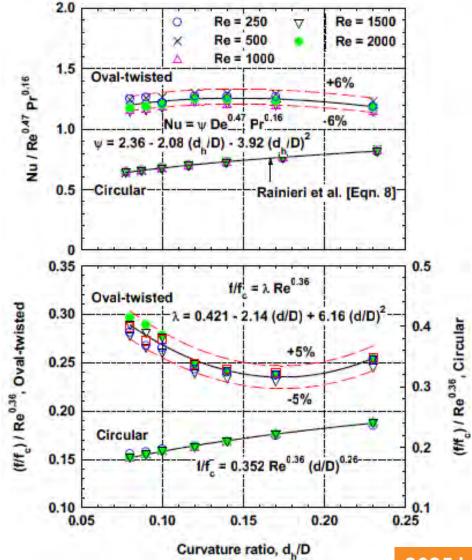
Wahlquist et al.., 2022, "Laminar Flow Heat Transfer In Helical Oval-Twisted Tube For Heat Exchanger Applications," Front. Heat Mass Transf., 18.

Idaho State University

Center for Advanced Energy Studies

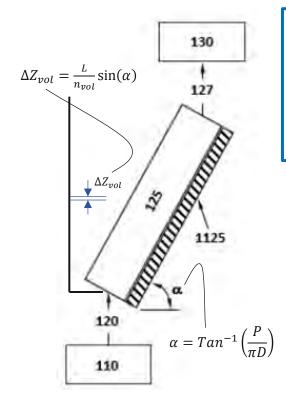

CFD Analysis Comparison of H-OTSG and OTHCHX

L. Wahlquist et al.., 2022, "Laminar Flow Heat Transfer In Helical Oval-Twisted Tube For Heat Exchanger Applications," Front. Heat Mass Transf., 18.


Wahlquist et al., 2025, "Development of novel oval-twisted helical tube once-through steam generator: Part I: Single-phase laminar flow," Prog. Nucl. Eng., 183, 105667.

The convective performance of the OTHCHX performed roughly 10-55% better, with a peak HT performance increase at d_h/D being around 0.15 and 0.17.

Nu and f correlations based on the numerical results were developed for the laminar flow regime, which are within $\pm 6\%$ and $\pm 5\%$, respectively.


Energy Studies

Wahlquist et al., 2025, "Development of novel oval-twisted helical tube once-through steam generator: Part I: Single-phase laminar flow," Prog. Nucl. Eng., 183, 105667.

[.] Wahlquist et al.., 2022, "Laminar Flow Heat Transfer In Helical Oval-Twisted Tube For Heat Exchanger Applications," Front. Heat Mass Transf., 18.

H-OTSG and OTHCHX RELAP5-3D Model

The single tube helical coil can be simplified^{1,2} in RELAP5-3D by

- Unwrapping the coil tube and make an inclined straight pipe component of the same length.
- Add a vertical change in elevation corresponding to the bundle height.
- Applying corresponding HTC and friction factor correlations to heat structure(s)

Comp.	Description
110	TMDPVL
120	TMDJUN
125	PIPE
1125	PIPE HEAT STRUCTURE
127	SNGLJUN
130	TMDPVL

Location of prescribed B.Cs:

110 – Apply water inlet temperature and pressure

120 – Apply calculated mass flowrate corresponding to chosen Re

125 - Horizontal pipe component with prescribed elevation gain per volume (ΔZ_{vol}) and vertical angle change (α). Pipe contains 99 vols.

1125 – Apply HTC correlation corresponding with developed models from literature

H-OTSG: Manlapaz and Churchill, 1987

$$Nu = \left[\left(3.657 + \frac{4.343}{X_1} \right)^3 + 1.158 \left(\frac{De}{X_2} \right)^{\frac{3}{2}} \right]^{\frac{1}{3}}$$

$$X_1 = 1 + \frac{957}{(De^2 Pr)^2}, X_2 = 1 + \frac{0.477}{Pr}$$

OTHCHX: Wahlquist et al., 2021

$$Nu = \psi D e^{0.47} P r^{0.16}$$

$$\psi = 2.36 - 2.08 \left(\frac{d_h}{D}\right) - 3.92 \left(\frac{d_h}{D}\right)^2$$

(1) BOUNDARY CONDITIONS:

Oscillating Wall Temperature (Triangle, Sinusoidal, Square *f*)

Wall Conditions:

- $T_s = 320, 335, 350 \text{ K}$
- f = 20, 50, 100 mHz

Inlet Conditions:

- $T_{in} = 300 \text{ K}$
- Re = 600 2000

External Conditions

Gravity present, opposing vertical flow.

(2) BOUNDARY CONDITIONS:

Pulsating Flowrate (Square $f_{\dot{m}}$)

Wall Conditions:

 $T_{\rm s} = 350 \, {\rm K}$

Inlet Conditions:

- $T_{in} = 300 \text{ K}$
- Re = 600 2000
- $f_m = 20, 50, 100 \text{ mHz}$

External Conditions

Gravity present, opposing vertical flow.

(3) BOUNDARY CONDITIONS:

Combined conditions (Square f and Square f_m)

Wall Conditions:

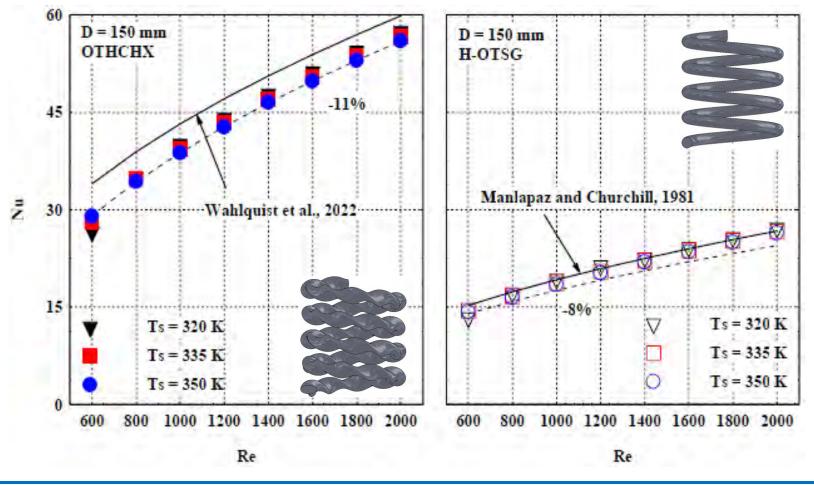
- $T_{\rm s} = 350 \; {\rm K}$
- f = 20,50,100 mHz

Inlet Conditions:

- $T_{in} = 300 \text{ K}$
- Re = 600 2000
- $f_m = 20,50,100 \text{ mHz}$

External Conditions

Gravity present, opposing vertical flow.

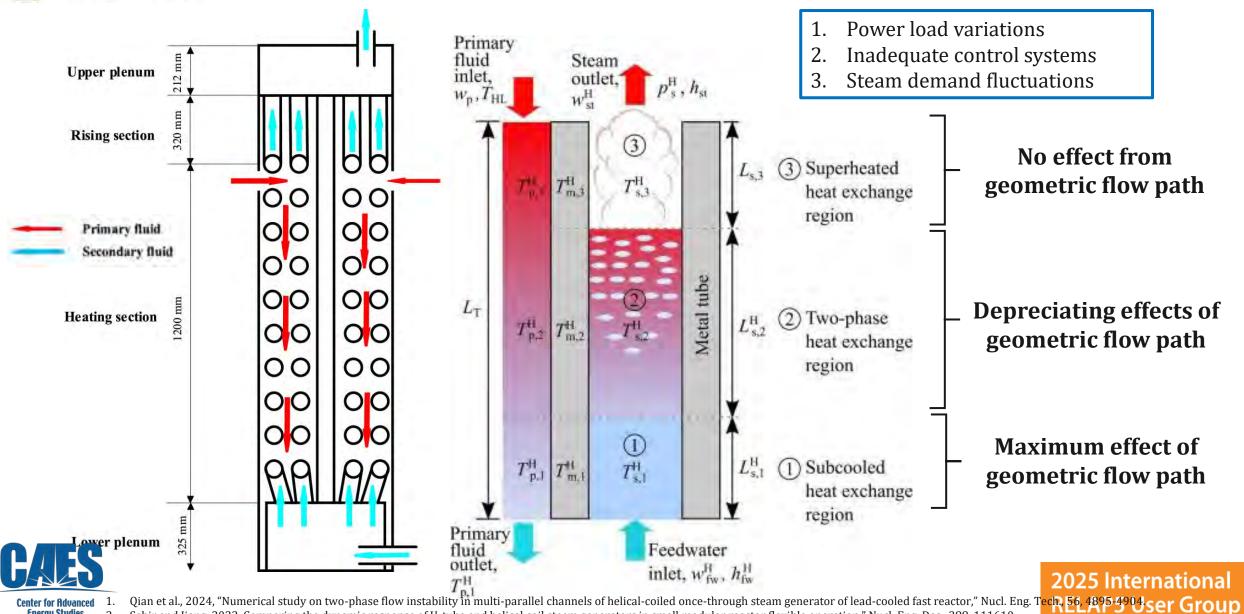


Energy Studies

Hoffer, N.V., Sabharwall, P., Anderson, N.A., 2011 "Modeling a Helical-coil Steam Generator in RELAP5-3D for the Next Generation Nuclear Plant," INL Report INL/EXT-10-19621. Xu, Z., Liu, M. Xiao, Y., Gu, H., 2021 "Development of a RELAP5 model for the thermo-hydraulic characteristics simulation of the helically coiled tubes," Ann. Nucl. Energ., 153, 108032.

H-OTSG and OTHCHX RELAP5-3D Model

The developed RELAP5-3D models for the OTHCHX and H-OTSG match their respective Nusselt number correlations within 11% and 8%, respectively. The friction factor behavior also matches the data and is not be presented here.

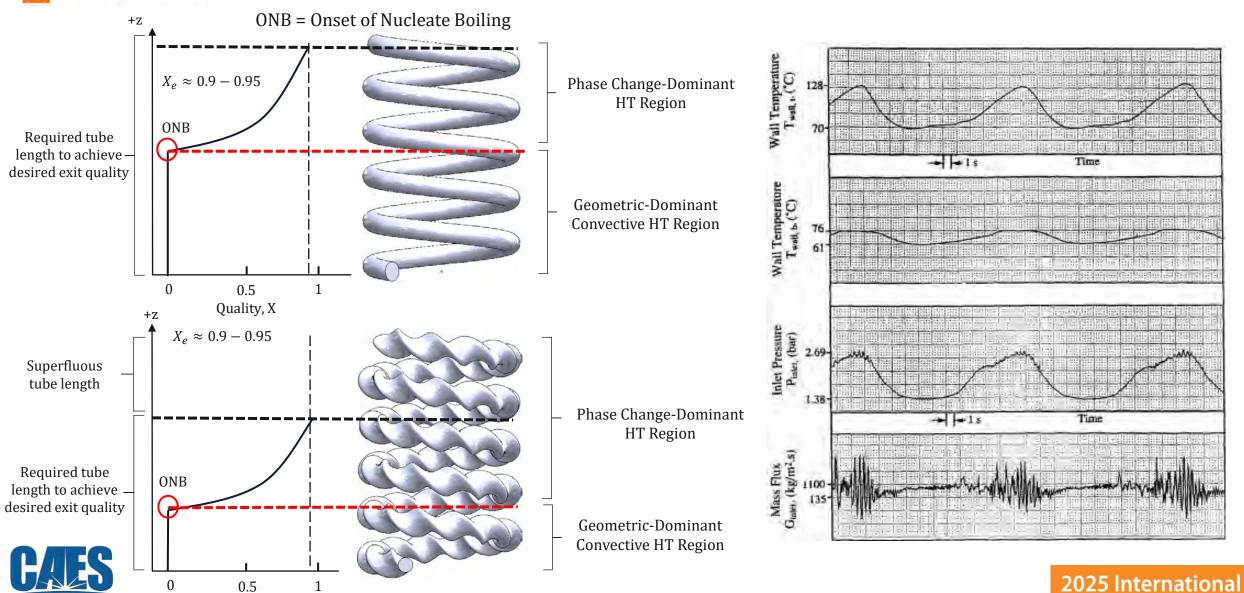


Disclaimer: The H-OTSG Nu correlation is experimentally validated, however the OTHCHX correlation based on RANS CFD analyses has yet to be experimentally evaluated.

Idaho State University

Energy Studies

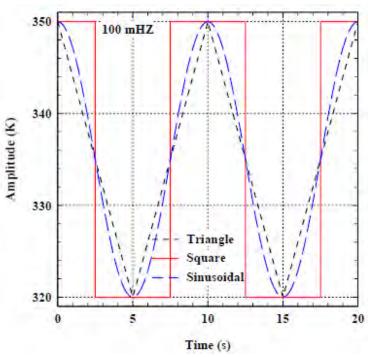
Temperature Instability Instigators

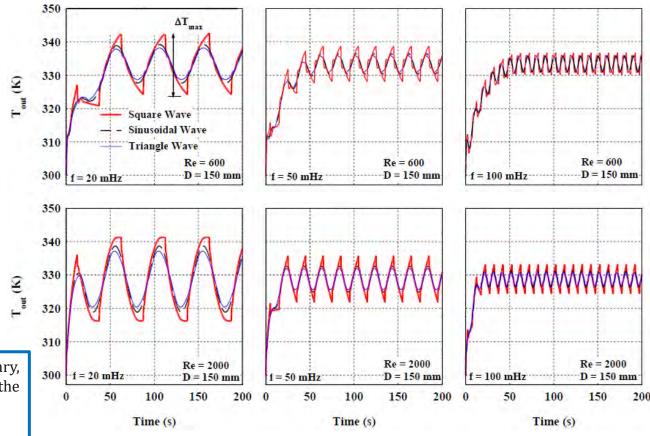

Sabir and Jiang, 2022, Comparing the dynamic response of U-tube and helical coil steam generators in small modular reactor flexible operation," Nucl. Eng. Des., 388, 111610.

2025 International

Center for Advanced Energy Studies

Temperature Instability Instigators


RELAP5 User Group


Din et al., 1995, "Dynamic instabilities of boiling two-phase flow in a single horizontal channel," Exp. Therm. Fluid Sci., 11, 327-342.

Quality, X

Results – Oscillating Wall Temperature

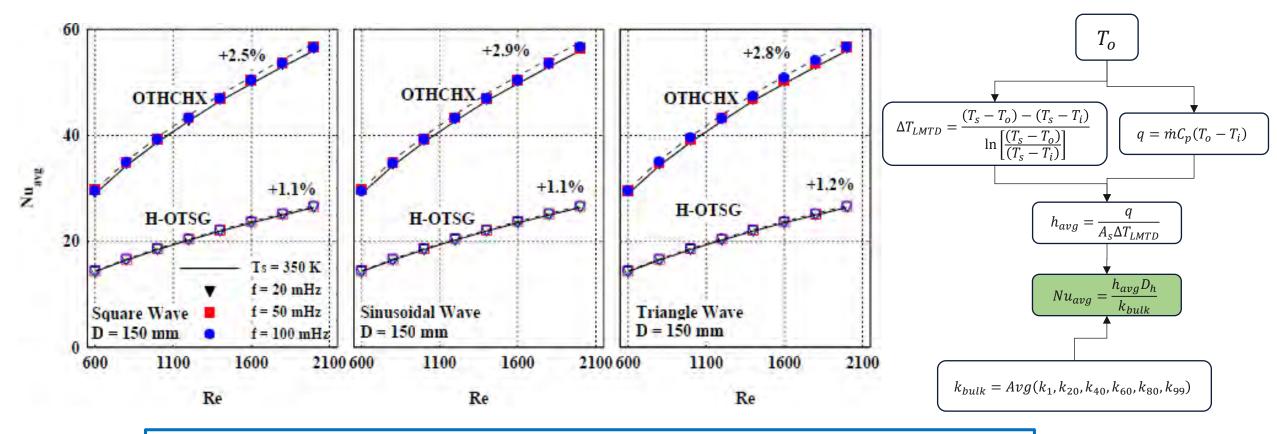
For two-phase and saturated environments on the outer pipe wall boundary, such as in steam generators, constant temperatures better represent the thermal boundary condition.

Triangle - Represents idealized gradual power variations

Square - Represents rapid power load spikes

Sinusoidal – Represents real gradual power variations

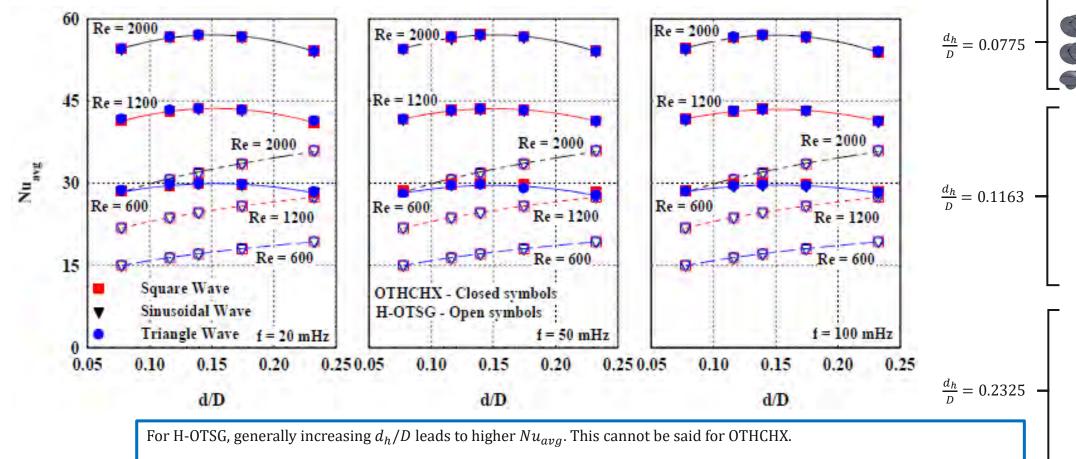
Oscillating wall temperature are known to induce thermal stress and fatigue which could lead to pipe rupture and mixing of primary and secondary fluids¹.


Oscillatory steady-state behavior observed after about t=100 s for all investigated Re and f.

Lower frequencies produce larger ΔT_{max} in outlet temperatures.

Results – Oscillating Wall Temperature

By averaging the transient temperature values between t = 100s and 500s, an average outlet temperature can be obtained, which can be used to determine Nu_{ava} .

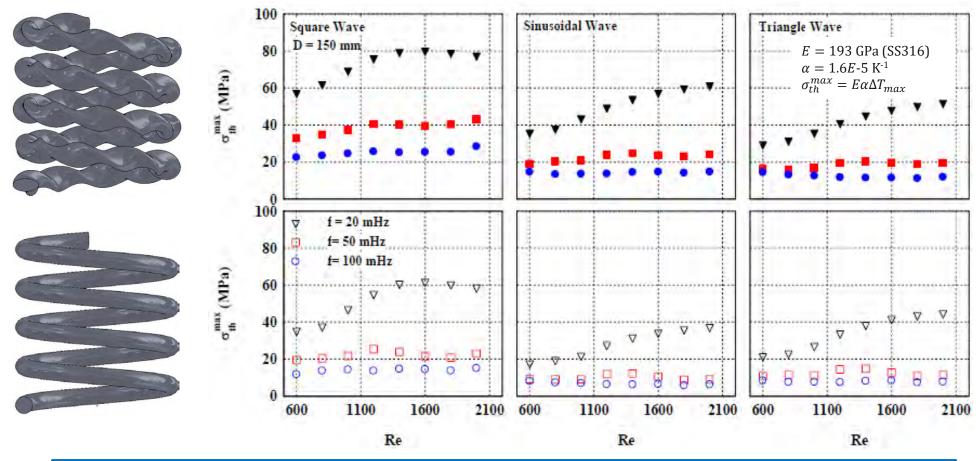

The introduction of fluctuating wall temperature boundary conditions leads to a slight increase in Nu_{avg} for the OTHCHX and there is negligible change for the equivalent H-OTSG geometry.

Center for Advanced Energy Studies

There is a slight difference in Nu_{avg} increase between the square wave loading and the triangle/sinusoidal wave loading, however the difference is very small.

Results - Oscillating Wall Temperature

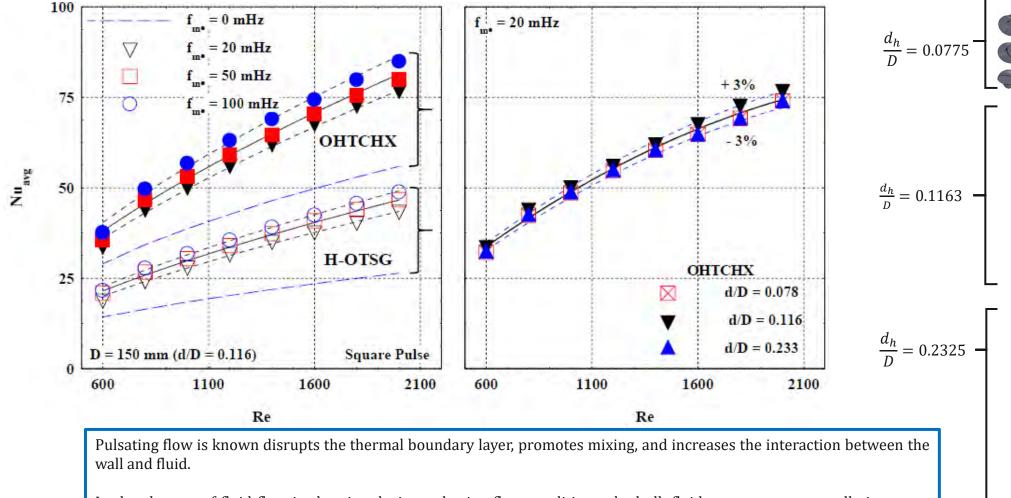
For $d_h/D < 0.15$, the secondary centrifugal forces generated from the large diameter helical configuration dominate the heat transfer performance enhancement but reduces the enhancement provided by the swirling vortices.


For $d_h/D > 0.17$, the extended helical configuration allows for more swirling vortices to dominate the heat transfer performance but reduces the enhancement provided by the small diameter helical configuration (secondary centrifugal forces).

Very little Nu_{ava} enhancement is provided by oscillating wall temperatures.

Results – Oscillating Wall Temperature

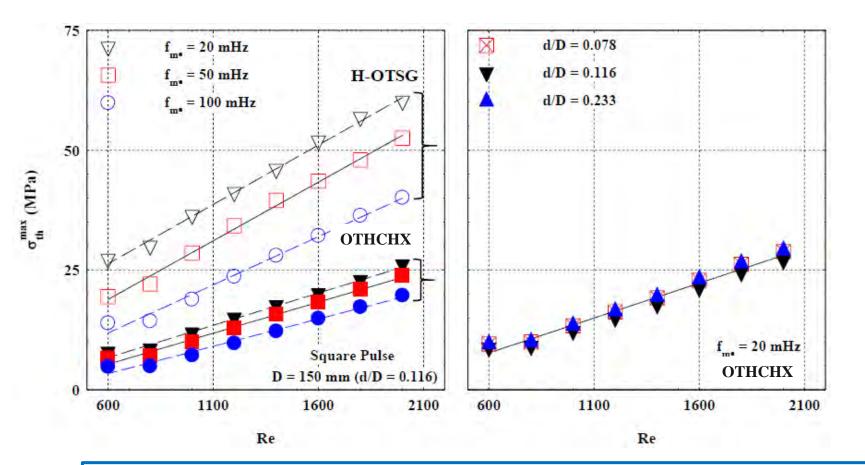
The steep temperature change in the square wave type attributes to the highest σ_{th}^{max} .


 σ_{th}^{max} increases as wave frequency goes down (slower wave). At lower frequencies, the bulk fluid temperature has a more extended periodic time to heat up and cool down, which allows for higher oscillation peaks and troughs.

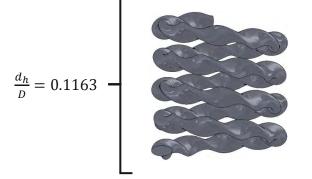
Center for Advanced Energy Studies

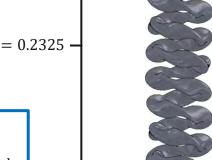
Comparison of σ_{th}^{max} between the H-OTSG and OTHCHX shows that the OTHCHX geometry contributes higher σ_{th}^{max} , which could indicate a potential negative trait of the OTHCHX geometry.

Results – Pulsating Flowrate


In the absence of fluid flow in the pipe during pulsating flow conditions, the bulk fluid temperature naturally increases towards T_{wall} . Once the flow rate resumes, the fluid temperature rapidly decreases and slowly begins to climb again. This process repeats until the fluid outlet temperature oscillates between T_{wall} and a quasi-steady state T_{out} value.

The OTHCHX Nu_{avg} performed roughly 75% higher than the H-OTSG and adds roughly 45-56% increase over constant flow conditions.

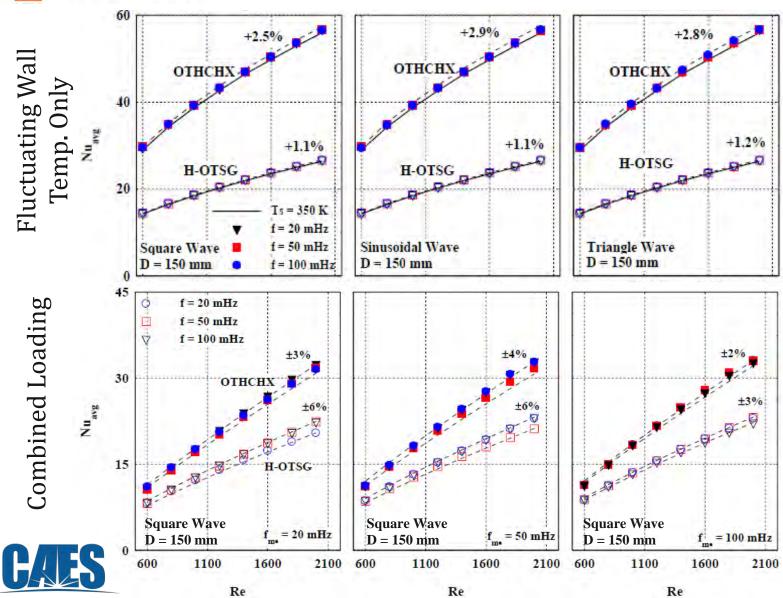



Results – Pulsating Flowrate

$$\frac{d_h}{D} = 0.2325 -$$

The OTHCHX geometry provided lower ΔT_{max} compared to the H-OTSG under pulsating flow conditions.

The increased turbulence added from the oval-twisted geometry of the OTHCHX increased the time-averaged quasi-steady state trough outlet temperature which made ΔT_{max} smaller, leading to lower σ_{th}^{max} .


 d_h/D shows insignificant impact on the calculated σ_{th}^{max} for OTHCHX under pulsating flow conditions.

Idaho State University

Energy Studies

Results – Combined Effects

(3) BOUNDARY CONDITIONS:

Combined conditions (Square f and Square f_m)

Wall Conditions:

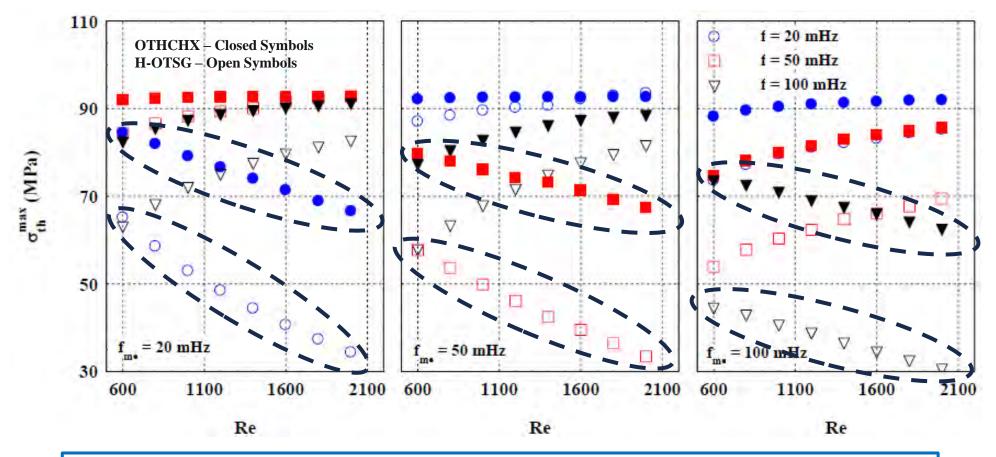
- $T_s = 350 \text{ K}$
- f = 20, 50, 100 mHz

Inlet Conditions:

- $T_{in} = 300 \text{ K}$
- Re = 600 2000
- $f_m = 20,50,100 \text{ mHz}$

External Conditions

 Gravity present, opposing vertical flow.


Although both the fluctuating wall temperature and pulsating flow conditions separately increase Nu_{avg} , the effects of combined fluctuating wall temperature and pulsating flow conditions do not increase Nu_{avg} .

For all investigated f_m and f, the OTHCHX performed better than the H-OTSG under combined conditions, similar to each individual condition (fluctuating wall temperature and pulsating flowrate) being applied. However, the Nu_{avg} is lower in general compared to its constant wall temperature and constant flowrate conditions.

This indicates that the two conditions are opposing each other in the convective heat transfer enhancement.

Results – Combined Effects

Under combined conditions, σ_{th}^{max} decreases when f_m matches f for both H-OTSG and OTHCHX, leading to a resonance behavior that decreases ΔT_{max} .

When f_m differs from f, σ_{th}^{max} increases with increasing Re.

The highest σ_{th}^{max} observed for a given boundary condition was around 93 MPa and is deemed to be the highest obtainable σ_{th}^{max} for the given boundary conditions.

Conclusions and Future Work

Conclusions:

	f (mII-)	(mHz) f (mHz)	отнснх		H-OTSG	
_	$f_{\dot{m}}$ (mHz)		Nu_{avg}	σ_{th}^{max} (MPa)	Nu_{avg}	σ_{th}^{max} (MPa)
Pulsating Flowrate	20-100	$0 (T_s = 350 \text{ K})$	77.1-84.9	19.7-26.1	43.1-48.8	40.1-60.1
Fluctuating Wall Temp	. 0	20-100	56.5-56.7	28.4-77.5	26.4-26.6	15.1-59
Combined	20-100	20-100	31.5-33.2	66.6-92.7	20.4-23.1	30.7-93.6

Future Work:

- The presented work is a preliminary study/exercise under mock conditions to assess idealized dynamic boundary conditions for the H-OTSG and novel OTHCHX geometries.
- Further numerical analyses are to be conducted to investigate higher dynamic temperatures closer to primary/secondary loop temperatures of standard LWR systems for the H-OTSG and OTHCHX. The following are also future analyses:
 - Single-phase turbulent flow regime comparison between CFD and RELAP5-3D under dynamic conditions for H-OTSG and OTHCHX.
 - Two-phase flow CFD and RELAP5-3D comparison for H-OTSG and OTHCHX.
 - Single-phase & two-phase experiment testing with thermal stress fiber optic sensors using ISU/CAES IHX Test Facility.

Thanks! Any Questions?

- Wahlquist, S., Ali, A., Sabharwall, P., Yoon, S.-J., 2020, "Novel Heat Exchanger Configuration for Enhanced Heat Transfer in Nuclear Application, ANS Winter Meeting, 123(1), 1717-1720.
- Wahlquist, S., Ali, A., Yoon, S.-J., Sabharwall, P., 2022, "Laminar Flow Heat Transfer In Helical Oval-Twisted Tube For Heat Exchanger Applications," Front. Heat Mass Transf., 18.
- Wahlquist, S., Ali, A., Schroeder, K., Yoon, S.-J., Sabharwall, P., 2025, "Development of novel oval-twisted helical tube once-through steam generator: Part I: Single-phase laminar flow," Prog. Nucl. Eng., 183, 105667.
- Wahlquist, S., Hamed, A., Bhowmik, P., Sabharwall, P., Mesina, G., Ali, A., 2025, "Dynamic Behavior of Oval-Twisted Helical Tube Heat Exchanger: Numerical Study with RELAP5-3D," Nucl. Tech., Accepted and awaiting publishment.
- Schroeder, K., Wahlquist, S., Sabharwall, P., Ali, A., "Development of novel oval-twisted helical tube once-through steam generator: Part II: Single-phase turbulent flow," Under Review (Prog. Nucl. Eng.).

Additional References

Slide 4:

- 1. Surface-grafting polymers: https://pubs.rsc.org/en/content/articlehtml/2020/qm/c9qm00450e
- 2. Solvent Coating: https://www.sciencedirect.com/science/article/pii/S1359431118363804
- 3. Plasma Spraying: https://www.himed.com/titanium-plasma-spray
- 4. Ion Implantation: https://www.frontiersin.org/10.3389/conf.fbioe.2016.01.01172/event_abstract
- 5. Lithography Direct-Writing: https://www.degruyter.com/document/doi/10.1515/aot-2019-0024/html
- 6. 3D Surface Patterning: https://journals.sagepub.com/doi/10.1177/1350650117738920
- 7. Biomacromolecule precipitation: https://www.sciencedirect.com/science/article/pii/B978008100970300002X
- 8. Perforated Twisted Tape: https://link.springer.com/article/10.1007/s00231-019-02716-9
- 9. Rectangular Cut Twisted Tape: https://link.springer.com/article/10.1007/s00231-019-02667-1
- 10. Inner Fins: https://www.sciencedirect.com/science/article/pii/S2666202723000046
- 11. Twisted Tape Insert: https://www.sciencedirect.com/science/article/pii/S1364032116300843
- 12. Wire Coil Insert: https://www.sciencedirect.com/science/article/pii/S1290072921003458
- 13. Twisted Rings: https://www.sciencedirect.com/science/article/pii/S0735193312000814#f0005
- 14. Ring Tubulator: https://onlinelibrary.wiley.com/doi/full/10.1002/htj.22167
- 15. Vortex Generator: https://link.springer.com/article/10.1140/epjp/s13360-022-02912-3
- 16. Oval Annulus: https://www.mdpi.com/2073-8994/12/8/1213
- 17. Annular Porous Media: https://iopscience.iop.org/article/10.1088/1757-899X/912/4/042030
- 18. Corrugated Tube: https://www.sacome.com/en/corrugated-tube-heat-exchangers/
- 19. Inner Spiral: https://www.globalsources.com/product/internal-spiral-seamless-steel-pipe_1051278322f.htm
- 20. Spiral Flutted: https://www.sciencedirect.com/science/article/pii/S0140700702000774
- 21. CS Change: https://www.sciencedirect.com/science/article/pii/S1877705815008024
- 22. Twisted Multi-Head: https://link.springer.com/article/10.1007/s00231-011-0915-4
- 23. Dimpled + Twisted Tape: https://durafintube.com/enhanced-surface-formed-and-dimpled-tubes-a-buyers-guide/
- 24. Oval twisted: https://www.sciencedirect.com/science/article/pii/S0894177718310744

