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Background
• The Transient Reactor Test (TREAT) facility has been restarted to test 

accident tolerant fuels for light water reactors that are designed to have 
better performance than traditional Zircaloy-clad UO2 fuel during 
normal operation and accidents

• New experiments are being performed to test proposed fuel concepts 
and provide data for assessment of advanced multi-physics computer 
codes

• Calculations are required now to demonstrate that the experiments will 
meet program objectives and can be performed safely

– The advanced multi-physics computer codes are not ready yet
– The safety calculations for the experiments are presently being 

performed using input from RELAP5-3D
• RELAP5-3D point kinetics models of TREAT were developed and 

validated previously as described at the 2015 and 2018 IRUG 
meetings
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Background (cont’d)
• The previous models simulated a half-slotted core that allowed viewing 

through the north hodoscope slot
• The simple RELAP5-3D model described at the 2015 IRUG meeting 

was modified to represent the core currently in TREAT
– The core is now a full-slotted core that allows viewing through 

either the north or south hodoscope and contains the Minimal 
Activation Retrievable Capsule Holder (MARCH)

• The simple RELAP5-3D model described in the 2015 IRUG meeting 
was modified to represent the full-slotted MARCH core 

• The simple model was validated using data from transients performed 
in the last year

• A description of the revised model and its validation are the subjects of 
this presentation 
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Description of TREAT

• TREAT is a dry reactor that went critical in 1959
• Operations were suspended in 1994
• The reactor was restarted in FY 2018
• Driver core is made up of urania dispersed in graphite blocks 

encapsulated by Zircaloy cans
• Square layout with 361 positions that are filled with fuel or dummy 

assemblies
• The size of the core varies from small to large (~ 150 to 340 fuel 

assemblies)
• Dummy assemblies are located around the periphery of the core and 

are filled with graphite for additional reflection
• Experiments are placed in the center of the core
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Description of TREAT (cont’d)
• Core is set on a square 

gridplate
• Core is surrounded by 

graphite reflectors  
• A small amount of 

cooling is provided by 
downflow of air

• The heat capacity of the 
graphite provides the 
primary heat sink during 
transients

• Reactivity control is 
provided by three banks 
of control rods 

• The transient rods are 
used for high-speed 
transient control 
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Description of TREAT fuel assembly

• Each fuel assembly is a 4x4” “square” that 
contains fuel, a gas gap, and a Zircaloy can  

• The gas gap was evacuated during 
manufacture

• Active core is 48” tall
• There is a small gap between fuel elements 

for air flow
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Description of TREAT (cont’d)

• TREAT can perform two types of transients
– Unshaped transients 

• The only reactivity addition is that required to initiate the 
experiment

• The reactor power responds naturally due to thermal feedback
– Shaped transients

• The transient rods are moved during the test to obtain a 
desired power curve

• The reactor power responds to the rod movement and the 
thermal feedback
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Description of the RELAP5-3D model of the full-
slotted MARCH core
• The RELAP5-3D model was developed to calculate the reactor power 

during experiments 
• The reactor power is needed to support other analyses required to 

demonstrate that the experiments will meet operational objectives and 
that they can be performed safely

• The model calculates the temperature of an average fuel assembly to 
supply thermal feedback to the point kinetics model

• The model also calculates the fuel temperature at the hot spot to 
determine the margins to thermal limits
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Description of the RELAP5-3D MARCH model of 
the full-slotted core (cont’d)
• The full-slotted model is based on the simple half-slotted model 

described at the 2015 IRUG meeting
– The number of fuel elements was reduced from 338 to 330 to 

accommodate viewing through the south hodoscope slot
– The volumetric heat capacity of the fuel was revised based on a 

new fit produced by the TREAT program
– The reactivity feedback due to changes in fuel temperature was 

revised based on new calculations
– The worth of the transient rods was revised based on new 

measurements
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Description of the RELAP5-3D model of the full-
slotted core (cont’d)

• The model is very simple
• One heat structure represents all the fuel in the 

core
• Another heat structure represents all the 

Zircaloy cans
• Radiation between the two average heat 

structures is accounted for 
• Conduction across the gap is neglected
• Two similar heat structures are used to 

represent the hottest fuel in the core
• A cylindrical heat structure is used to represent 

the square assemblies
• Distortions are accounted for by adjusting the 

heat transfer coefficient at the outer surface of 
the can and the thermal conductivity of the 
Zircaloy
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The RELAP5-3D model was validated using data 
from three new transients
• All three transients were unshaped and were initiated by near step 

insertions of reactivity
– Transient 2909 (0.0171 dk/k or 2.38$)
– Transient 2910 (0.0294 dk/k or 4.10$)
– Transient 2911 (0.0388 dk/k or 5.41$)

• The measured power from the log channel of the control computer was 
judged to be the most reliable based on previous experience and was 
used in this validation

– The energy deposition in the core is the integral of the measured 
power
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The RELAP5-3D model was validated using data 
from three new transients (cont’d)
• Preliminary calculations of the validation transients with the MARCH 

feedback table resulted in slightly non-conservative values of energy 
deposition and maximum fuel temperature

– The average ratio of the calculated to measured energy deposition 
was 0.976

– The calculated maximum fuel temperatures were 6.3°C lower, on 
average, than the measured values

• The calculated reactivity feedback was reduced by 2% so that the 
results of the validation calculations would be slightly conservative
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The near step insertions were modeled based 
on the movement of the transient rods

• The input position was 
based on the average of the 
measured positions of the 
four transient rods 

• The transient rods 
accelerate and decelerate 
quickly and reach a 
maximum velocity of 
about 140 inches/s
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The calculated maximum power is in reasonable 
agreement with the measurements as a function 
of reactivity 

• The calculated maximum 
reactor powers were within 
the scatter of the 
measurements or were 
conservative for each 
transient
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The calculated energy deposition is in 
reasonable agreement with the measurements 
as a function of reactivity 

• The calculated energy 
deposition was 
conservative or within the 
scatter in the 
measurements for each 
transient 

• The average ratio of the 
calculated to measured 
energy deposition was 
1.002
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The calculated maximum fuel temperature is in 
reasonable agreement with the measurements 
as a function of reactivity 

• The calculated maximum 
fuel temperatures were, on 
average, 1.3°C higher than 
the measured values

• The deviations between the 
calculated and measured 
temperatures were 
probably close to the 
uncertainty in the 
measurements
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The calculated powers are in reasonable 
agreement with the measurements as a function 
of time

• These results are for 
Transient 2010
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The calculated energy depositions are in 
reasonable agreement with the measurements 
as a function of time

• These results are for Test 
2910
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Conclusions
• The simple RELAP5-3D model of TREAT was modified to represent 

the full-slotted MARCH core
• Modifications were made to represent the worth of the transient rods 

and reactivity feedback for the MARCH core
– The reactivity feedback was multiplied by 0.98 to provide slightly 

conservative results
• The modified model was validated using data from Transients 2909, 

2910, and 2911, which were unshaped transients initiated with near 
step insertions of reactivity of about 1.7%, 2.9%, and 3.9%, 
respectively
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Conclusions (cont’d)
• The RELAP5-3D calculations were in reasonable agreement with the 

measured results
– The calculated maximum reactor powers were within the scatter of 

the measurements or were conservative
– The average ratio of the calculated to measured energy deposition 

was 1.002
– The calculated maximum fuel temperatures were, on average, 

1.3°C higher than the measured values
• The results of the RELAP5-3D calculations are currently being used as 

input for the thermal and structural evaluations of new TREAT 
experiments


