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Background
• The Transient Reactor Test (TREAT) facility has been restarted to test 

accident tolerant fuels for light water reactors that are designed to have 
better performance than traditional Zircaloy-clad UO2 fuel during 
normal operation and accidents

• New experiments will be performed in the next few years to test 
proposed fuel concepts and provide data for assessment of advanced 
multi-physics computer codes

• Calculations are required now to demonstrate that the experiments will 
meet program objectives and can be performed safely

– The advanced multi-physics computer codes are not ready yet
– The safety calculations for the first experiments will be performed 

with RELAP5-3D
• A simple RELAP5-3D point kinetics model of TREAT was developed 

and validated previously as described at the 2015 IRUG meeting
• A more detailed RELAP5-3D model is the subject of this presentation 
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Description of TREAT

• TREAT is a dry reactor that went critical in 1959

• Operations were suspended in 1994

• The reactor was restarted this fiscal year

• Driver core is made up of urania dispersed in graphite blocks 
encapsulated by Zircaloy cans

• Square layout with 361 positions that are filled with fuel or dummy 
assemblies

• The size of the core varies from small to large (~ 150 to 340 fuel 
assemblies)

• Dummy assemblies are located around the periphery of the core and 
are filled with graphite for additional reflection

• Experiments are placed in the center of the core
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Description of TREAT (cont’d)

• Core is set on a square 
gridplate

• Core is surrounded by 
graphite reflectors  

• A small amount of 
cooling is provided by 
downflow of air

• The heat capacity of the 
graphite provides the 
primary heat sink during 
transients

• Reactivity control 
provided by three banks 
of control rods  
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Description of TREAT fuel assembly

• Each fuel assembly is a 4x4” “square” that 
contains fuel, a gas gap, and a Zircaloy can  

• The gas gap was evacuated during 
manufacture

• Active core is 48” tall
• There is a small gap between fuel elements 

for air flow
• More that 50% of the flow area is located 

near the corners, while the wetted perimeter 
of the corners is less than 20% of the total
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Description of TREAT (cont’d)

• TREAT can perform two types of transients
– Unshaped transients 

• The only reactivity addition is that required to initiate the 
experiment

• The reactor power responds naturally due to thermal feedback
– Shaped transients

• The transient rods are moved during the test to obtain a 
desired power curve

• The reactor power responds to the rod movement and the 
thermal feedback



8

Description of the detailed RELAP5-3D model

• The detailed RELAP5-3D model was developed to calculate the 
reactor response during experiments and accidents 

• The model represents hot and average fuel assemblies, the reflectors, 
and the concrete

• The model accounts for
– Reactivity feedback
– Axial conduction in the fuel elements using a conduction enclosure 

model
– Forced convection cooling due to blower operation
– Natural convection cooling in the event of blower failure

• The model monitors oxidation of the Zircaloy can at the peak power 
location in the hot fuel assembly
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Description of the RELAP5-3D model (cont’d)

111-1
2

7

9

20

22

111-27

Gripping fixture (HS 1111)

Upper reflector (HS 1112)

Upper insulator (HS 1113)

Fuel (HS 1114)

Lower insulator (HS 1115)

Lower reflector (HS 1116)

Grid plate (HS 1117)

110-1
2

7

9

20

22

110-27

HS 1101

HS 1102

HS 1103

HS 1104

HS 1105

HS 1106

HS 1107

112-1

2

3

4

112-5

HS 1122

HS 1124

HS 1126

113-1

2

3

113-4

114-1

2

3

114-4

108

107

100

105

117

118

120

Lower plenum

Upper plenum

Concrete
(HS 1141)

Permanent
reflector
(HS 1131)

Hot assembly

Average assembly



10

Validation results were generated for a historical 
cooldown test

– Test initiated by an unshaped reactivity transient that established 
the initial axial temperature distribution

• Axial conduction was the dominant heat transfer mechanism 
prior to 87 minutes, when the blowers were turned on

• Forced convection to air was the dominant heat transfer 
mechanism after 87 minutes

– The model was adjusted to match temperature measurements 
• The axial thermal conductivity of the fuel was reduced from a 

nominal value of 21 W/m-K to 13 W/m-K
• The axial thermal conductivity of the insulators was set at 0.15 

W/m-K
• The heat transfer coefficients were multiplied by a fouling 

factor of 0.45
– Most of the heat transfer area is cooled by a relatively 

small fraction of the flow that probably sees much worse 
than average heat transfer conditions
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Axial temperature profiles in the historical 
cooldown test at 0 min
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Axial temperature profiles in the historical 
cooldown test at 85 min
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Axial temperature profiles in the historical 
cooldown test at 110 min
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Axial temperature profiles in the historical 
cooldown test at 230 min
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Temperature versus time 14 inches from the top 
of the active fuel in the historical cooldown test 
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Temperature versus time 26 inches from the top 
of the active fuel in the historical cooldown test 
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Temperature versus time 38 inches from the top 
of the active fuel in the historical cooldown test 
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Temperature versus time 50 inches from the top 
of the active fuel in the historical cooldown test 
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Zircaloy oxidation model

• The oxidation model for TREAT is:

– Wgain = A t e (-Q/(RT)) = 8.5E6 t e (-3.10E4/(1.9872 T)) , where Wgain is the 
weight gained due to oxidation (mg/cm2), t is time (hr), and T is the 
temperature (K) 

– The model is based on oxidation measurements of Zircaloy-2, 
which is conservative for TREAT, which has Zircaloy-3

• The RELAP5-3D metal-water reaction model is based on parabolic, not 
linear, kinetics

• The control system was used to monitor the oxidation of the Zircaloy 
can at the peak power location 
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Oxidation of Zircaloy-2 samples

• Slope changes in 
measured curves are 
due to a transition 
between reaction 
regimes

• The pre-transition 
regime was 
characterized by a 
reaction rate between 
parabolic and cubic

• The post-transition 
regime was linear

• The model is based 
on the linear, post-
transition data
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Oxidation of Zircaloy-3 samples

• TREAT fuel 
assemblies are clad 
with Zircaloy-3, not 
Zircaloy-2

• The calculated oxide 
thickness exceeds the 
measured value for 24 
of 28 points

• Therefore, the model 
is conservative



22

Validation results were generated for a wide 
range of reactivity insertions
• Seven unshaped experiments conducted around1960

– Initiated by near step insertions of reactivity in relatively small 
cores (~ 150 fuel assemblies)

– Reactivity insertion varied from 0.42 to 1.90%  (0.58 to 2.65$)
• Two experiments conducted during the early 1990’s with the M8 half-

slotted core (338 fuel assemblies) 
– Test 2857

• Unshaped transient initiated by a near step insertion of 
reactivity (3.85% or 5.36$)

– Test 2871
• Shaped transient with a total reactivity insertion of about 6% or 

8.4$
• Results were similar to those obtained previously with the simple 

model
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Both models produced a reasonable 
representation of the historical data 

• The energy deposition in 
was 11% low, on average, 
with the detailed model

• The calculated results with 
the detailed model were 
generally a little better 
than those obtained 
previously with the simple 
model
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Conclusions
• The detailed RELAP5-3D model was validated using data from 

cooldown, oxidation, and reactivity insertion experiments
• Adjustments were made to the detailed model to match measured 

cooldown data
– The axial thermal conductivities of the fuel and insulators were 

adjusted to match measured core temperatures prior to blower 
operation

– The convective heat transfer coefficients were lowered to match 
measured cooldown rates when the blowers were operating

– After these adjustments, the quantitative agreement between the 
calculated and measured temperatures is reasonably good

– The model captures all of the significant trends observed in the test
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Conclusions (cont’d)
• The RELAP5-3D model monitors the oxidation of the Zircaloy can at 

the peak power location in the hot fuel element
– The model is based on oxidation measurements of Zircaloy-2 

samples in the post-transition regime
– The model was validated for TREAT applications using oxidation 

data from Zircaloy-3 samples 
– The calculated oxide thickness exceeded the measured value for 

28 of the 32 data points
– Therefore, the model is conservative with respect to the calculation 

of oxidation of the TREAT cladding 
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Conclusions (cont’d)
• The detailed model generates results that are in reasonable agreement 

with measured values of maximum core power, energy deposition, and 
maximum fuel temperature for a wide range of reactivity insertions

• The detailed and simple models produce similar results for the 
reactivity insertion experiments 

– Since the simple model runs much faster, it is more suitable for 
programmatic analyses to support experiments

– The detailed model is better suited to simulate the long-term 
response of the reactor during experiments and accidents

– Therefore, the detailed model is more suitable for reactor safety 
calculations


