
w
w
w
.in
l.g
ov

Upgrade to GFORTRAN and
Fortran 2003

2019 IRUG Meeting
Idaho Falls, ID
April 18 – April 19, 2019

G. L. Mesina

INL/CON-19-53482

2

Outline
• Reasons/Advantages
• History of Upgrades
• Issues
• Results
• Conclusions

3

History of Architectural Upgrades
• FACT: Must keep concurrency with evolving computer industry or

become obsolescent and non-working.
• Fortran 66: original RELAP5 coding
• Fortran 77: conversion after the compilers stabilized in mid-80’s
• Developed “32-bit int / 64-bit real” equivalence in late 80’s
• Adapt to new machines as they become available, mid-80’s & ongoing

– CDC; Cray; Cray2; DEC: RISC, RISC2, Alpha; HP; IBM (various);
SGI; Stardent; SUN-Solaris; Windows; Apple Macintosh (Briefly)

• Ongoing Operating System Adaptations
– CDC: NOS, NOS/BE, etc.
– Unix: UNICOS, IBM, HP, SGI, SUN, DEC
– Windows: 95, 98, ME, XP, 7, …
– LINUX: Red Hat, SUSE, CYGWIN, …

4

History of Architectural Upgrades
• Processing mode

– Scalar, original
– Vector, mid-80s through mid-00s
– SMD Parallel (Cray dirs., Open-MP), late 80s to mid-00’s
– DMD Parallel: PVM coupling to self, early 00’s & ongoing

• Coupling with other programs – PVM Executive, early 00’s & ongoing
• Graphics

– Whole plant: NPA (1990’s), RGUI (late 90’s to mid-00’s),
– Input-builders (SNAP, etc.), Plot programs (XMGR, APTplot, etc),

• Restructuring to strongly modular coding, mid-00’s
• Resizable: Fortran 90/95, modules, derived types, pointers…, late-00’s
• Refactoring: ongoing

5

What is the Planned Upgrade?
• Current status
• RELAP5-3D currently guarantees to build with an Intel Fortran 95

compiler equipped with certain Fortran 2003 extensions
– Intel compilers released since 2013

• It will run on a Linux or Windows 7 Operating System
– Installation with MSVS or CYGWIN on Windows

• Upgrade ADDS CAPABILITY to these
• Capability to build with GNU Fortran Compiler
• “Strict” Fortran 2003 standard

– Strictness of application of the standard varies with compiler

6

Why Upgrade?
• Longterm Viability – GNU Fortran will be around

– GNU converts to C-language then compiles, C underlies most O/S and will
be around

– Compiler Vendors for evolving Fortran declining in number
• ANSI Fortran 2018 standard released last year
• Only Cray, GNU, IBM, and Intel have some features
• PGI (NVIDIA),Flang, and NAG support Fortran 2003

• Incorporation into MOOSE herd
– INL HPC Cluster fully supports GFORTRAN
– Access to all MOOSE coding

• Reliability – the probability of failure-free operation for a specified
period of time in a specified environment
– Testing on two different compilers and operating systems reveals errors

that just one compiler or O/S would not
– These are solved before the code is released

7

Why Upgrade to Fortran 2003 Standard?
• Software quality – Code written to an ANSI standard survives

– Vendors add extensions to the language that, years later, either:
• Become unsupported
• Subtly change meaning and code operation

– Library quality software is written in ANSI Fortran standards
• Even some FORTRAN66 library software still compiles & runs

on current compilers and O/S
• Portability – ANSI Standard software works on evolving platforms

– It disallows specialized coding that accesses special hardware that
does not survive computer evolution

• Maintainability – Easier and less time-consuming to maintain
– Disallows vendor extensions that become unavailable and must be

rewritten

8

Operation and Issues
• Development of GNU and Fortran 2003 compilation capability

– Mostly manual with assists from scripts where possible
– Proceed directory by directory, upgrading all files within.
– Order of upgrades induced by usage precedent.

1. XDR – eXtended Data Representation, machine-indep. Binary
2. Modules – Directory of Common F90 modules
3. Envrl – service subprograms: solvers, interpolators, fluid properties
4. LApack – some math subprograms
5. Rellic – RELAP5-3D license control
6. Jacdir – Jacobian matrix calculation
7. Relap – Program input, physics calculations, and output
8. Polate – auxiliary standalone fluid property generator
9. Fluids – Generators for the many fluids RELAP5-3D can use
10. R5exec – PVM coupling capability

9

Operation and Issues
• Develop GNU compilation capability first then added Fortran 2003 in

first 5 directories
– Develop an understanding of what was involved

• Did both GNU & Fortran 2003 capabilities at once thereafter.
• REQUIREMENT:

– Test that code runs with both Intel and GNU compilers
– Done incrementally. When problem arises, stop and fix

• REQUIREMENT on Development Environment
– GIT for “version control”
– CIVET for testing

10

Preparation
• Comment: both GIT and CIVET have steep learning curves
• CIVET source code requirements

– No trailing whitespace allowed. All removed
– No tabs allowed in source code. All replaced
– Certain keywords disallowed. Removed or replaced.

• Add a GFORTRAN option to all major installation scripts
– Some new scripts had to be created because the Makefile only

accessed IFORT. E.G. LAPACK, Jacobian, polate
• Add Fortran 2003 compiler flag to IFORT and GFORTRAN
• Split lines of source code that exceeded132 character length limit.

11

Issues
• Level of compiler matters.

– Several GNU compilers on the HPC.
– Default compiler could not handle some Fortran 2003 construct properly
– Cannot mix two (very) different levels of GNU Fortran

• Name mangling of C-language coding
– Location prefix and postfix underscores prevented linking with GNU

compiled Fortran at first
• Equivalence of numbers and characters is not allowed in Fortran 2003

– Remove character from equivalence w numbers (R-level)
– Use the internal read or write to transfer where needed

• Some transfer functions in PIB (XDR) pass real to integer and vice-versa
– Have to use Fortran TRANSFER function to move bits from one to other
– Important in data-type transformation module for plotting

12

Issues
• Star-before-length declaration no longer allowed

– ERROR: real*8, character*20, etc.
– -> real(8), character(20), etc.

• Declaration array shapes must be right. E.G. in fluids/D2O/cof.f90
– ERROR: real(sdk), parameter :: a(10,7) = (/ 70 numbers /)

• Left side is matrix. Right side is vector
– -> real (sdk), parameter :: a_temp(70) = (/ 70 numbers /)
– -> real(sdk), parameter :: a(10,7) = reshape (a_temp, [10, 7])

• Declaration initialization of character variables requires right number of
characters. E.G.
– ERROR: character(8), dimension(2) :: filenms = (/ 'beta','kappa'/)
– -> character(8), dimension(2) :: filenms = (/ 'beta ','kappa '/)

• New IEEE modules provide many constants, such as NaNs, for various
uses.

13

Issues
• Call arguments must EXACTLY match the type of the dummy

arguments
– Attributes must match, such as dimensionality, pointer, etc.
– No more passing a scalar to a length one vector, vector to matrix
– Kind matters. Cannot pass 16-byte or 4-byte to an 8-byte dummy
– Mismatched character length can cause link error or failure to run

• GFORTRAN compiler flag for default 8-byte reals turns “double
precision” declaration statement into 16-byte reals
– Turned “D” exponents into “E” exponents. 1.0D0 -> 1.0E0
– Turned dabs, dexp, dsqrt, dlog, etc. into abs, exp, sqrt, log, …

14

Issues
• To pass a 4-byte number, put value in 4-byte variable & pass it

– E.G: call openPibExportFile(err,0,tpfname,pname,vers,desc)
– -> integer(ptik), save :: fnum = 0
– -> call openPibExportFile(err,fnum,tpfname,pname,vers,desc)

• Statement functions are not allowed in Fortran 2003
– Turn them into contained (internal) function subprograms

• Access to O/S procedures superceded by Fortran intrinsics
– getarg replaced by get_command_argument
– iargc replaced by command_argument_count

• Jumps into a “body” block of code from outside is an error
– E.G. if-then-block, else-block, do-loop body

15

Issues
• Elimination of Obsolescent constructs

– Assign keyword
– Indexed GO TO statement
– Old platform specific statements

• Formats
– Cannot continue a character string to the next line. Must break
– Commas required between format specifiers, even at end of line
– Format specifier “x” not allowed. Replaced by “1x”
– Field length required

• “10 format (a10)” not “10 format (a)”
• read (5,'(a10,x,i5)’) name, j not read (5,'(a10,x,i)‘ name, j

16

Summary
• Upgrade progress:

– Directories upgraded: 8 of 10
• Relap not finished and r5exec

– Changed files: 1224 of 8118
• Comparisons on Linux between compiling with IFORT and GFORTRAN

– Fluid asci table files, *.pr, identical, except H2O 1967
– All non-restart problems run

• Remaining work
– Fix restart with GFORTRAN and Fortran 2003
– Upgrade r5exec
– Possibly fix 1967 H2O generator.

17

Summary
• Question to IRUG?

– Should we fix 1967 H2O generator or keep using the “ASCII” trick?
• The “ASCII” trick is to convert a binary file, such as tpfh2o2, to ASCII

– Use program stb2a of the fluids directory
– Output is called a_tpfh2o2

• Thereafter on installation, stb2a inputs a_tpfh2o2 and outputs tpfh2o2
• Currently, the “ASCII” trick is ALREADY used for 1967 water.
• Fixing the generator allows us to generate water properties from a

better set of grid points for more accuracy in the future
– That would change results for all problems that use 1967 water.

