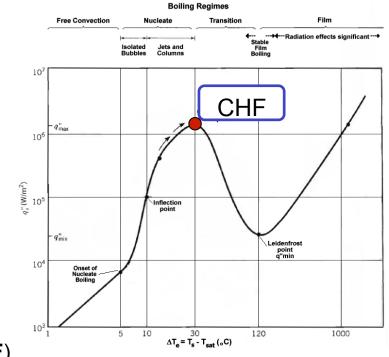
Update on RELAP5-3D CHF Geometry Correction Factors

Yong-Joon Choi, Ph.D. (yong-joon.choi@inl.gov)

2016 IRUG Meeting

Idaho National Laboratory

Critical Heat Flux and Look up table


Heat flux when DNB occurs

- Local over-heating → Failure / Accident
- Reactors designed to avoid CHF
- CHF value from empirical correlations and look up tables

CHF Look up table (LUT)

- Normalized CHF value data bank for water
- Standard table by Groeneveld et al.,
 - 1986 version : ~15000 data points (chftab.F)
 - 2006 version : ~30000 data points (chftab06.F)
- CHF look up table is function of pressure (P), mass flux (G) and quality (X)
 - 3D interpolation needed for exact value

Pressure	Mass Flux										C	HF JKW	m 41											П
[kPa]	[kg m ⁻¹ s ⁻¹]										C.	ar len												
	X→	-0.50	-0.40	-0.30	-0.20	-0.15	-0.10	-0.05	0.00	0.05	0.10	0.15	0.20	0.25	0.30	0.35	0.40	0.45	0.50	0.60	0.70	0.80	0.90	1
100	0	8111	7252	6302	4802	4086	3057	1990	1142	637	415	284	223	188	165	152	142	133	123	114	110	96	55	0
100	50	8317	7271	6326	5035	4236	3453	2420	1570	1011	784	641	587	553	531	475	443	419	387	347	277	239	204	0
100	100	8390	7295	6371	5322	4586	3640	2942	2103	1558	1275	1013	885	847	811	789	758	745	715	700	600	459	359	0

CHF Look up table geometry correction factor

CHF values from LUT need correction factors

- Factors correct given CHF value based on geometry and flow type, and range of pressure (pressure range factor in 1986 version)
- RELAP5-3D is designed to calculate appropriate correction factors for each case
- Status of correction factors in chftab06.F of RELAP5-3D v434
 - K1: Sub-channel/tube diameter, cross-section geometry (**not updated**)
 - K2: Bundle geometry (updated)
 - K3: Mid-plane space factor for 37 elements bundle (CANDU) (same as1986)
 - K4: Heated length factor (same as1986)
 - K5: Axial flux distribution factor (**same as 1986**)
 - K6: Radial or circumferential flux distribution factor (**not updated**)
 - K7: Horizontal flow orientation factor (not updated)
 - K8: Vertical low flow factor (**updated**)

User problem feedback

• #179: 2006 version still uses 1986 version of K1 factor

- For 2006 version (chftab06.F), K1 factor still uses 1986 version
- 1986 version
 - K1=(0.008/D)^{0.33} for D<0.016m, K1=(0.008/0.016)^{0.33} = 0.79 for D>0.016m
- 2006 version
 - K1=(0.008/D)^{0.5} for 0.003<D<0.025m, K1=(0.008/0.025)^{0.5} = 0.57 for D>0.025m
- Update of K1 factor is completed

#186: Manual update needed for chftab06.F

- Description on CHF Look up table geometry correction factors of 2006 version is insufficient
- K6, K7 and K8 are not correctly defined in chftab06.F
- Above factors are updated and documented (for draft manual)
- Test on updated chftab06.F was also performed

K1 sub-channel / tube-diameter, cross section geometry factor (Updated in 2016)

1986 version	2006 version					
K1=(0.008/D) ^{0.33} for D<0.016m	K1=(0.008/D) ^{0.5} for 0.003 <d<0.025m< th=""></d<0.025m<>					
K1=(0.008/0.016) ^{0.33} = 0.79 for	K1=(0.008/0.025) ^{0.5} = 0.57 for					
D>0.016m	D>0.025m					

K1(86') > K1(06')

K2 bundle geometry factor

Already updated in v434

1986 version	2006 version
$K2=min[0.8, 0.8exp(-0.5X_{lim}^{0.33})]$ for rod bundles	$K2 = min\left[1, \left(\frac{1}{2} + \frac{2\delta}{D}\right)exp\left(\frac{-(X_e)^{1/3}}{2}\right)\right]$
$X_{lim}=min[1, max(0, X_e)]$ K2=1.0 for other surfaces	where δ =minimum rod spacing (=P-D)

K3, K4 and K5 factors are same in 1986 and 2006

K3 Grid spacer factor (for 37 CANDU element bundle)

 $K3 = 1 + A \cdot exp(-B \cdot L_{SP}/D_e)$ where $A = 1.5K_{loss}0.5(G/1000)^{0.2}$, B = 0.1

K4 Heated-length factor

For $L/D_e > 5$ $K4 = exp\left[\left(\frac{D_e}{L}\right)exp(2\alpha_h)\right]$, where $\alpha_h = \frac{X_e\rho_f}{X_e\rho_f + (1 - X_e)\rho_f}$

K5 Axial flux distribution factor

For $X_e < 0$; K5=1.0 and For $X_e > 0$; K5 = q''/q''_{bla}

K6 factor : new in 2006 version (added in 2016)

K6 Radial or circumferential flux distribution factor

- Newly added in 2006 Look up table correction factor

For $X_e < 0$; K6 = 1.0 and for $X_e > 0$; K6 = $q''(z)_{max}/q''(z)_{avg}$

- K6 could be added by multiplication with K5, "Local boiling factor".

- 1CCCG80X W8(R) \rightarrow K5×K6
- Therefore, the user can implement this factor

K7 horizontal flow factor (updated in 2016)

In 1986 version, horizontal flow factor defined as K6

1986 version	2006 version
K6=1 if vertical K6=0 if horizontal stratified K6=1 if horizontal high flow K6=interpolate if medium flow	$K7 = 1 - \exp(-(T_1/3.0)^{0.5})$ $T_1 = \left(\frac{1 - X_e}{1 - \alpha}\right)^2 \frac{f_L G^2}{g D_e \rho_f (\rho_f - \rho_g) \alpha^{0.5}}$ where Friction factor of the channel, f _L , is suggested as; f _L = 0.046Re ^{-0.2}

K8 Vertical low flow factor

In 1986 version, vertical flow factor defined as K7

1986 version	2006 version
For G<-400 or G>100kg/m ² s; K7 = 1.0	For G<-400 kg/m²s or X _e << 0; K8 = 1.0
For -50 <g<10 kg="" m²s<="" td=""><td>For -400<g<0 ;<="" kg="" m²s="" td=""></g<0></td></g<10>	For -400 <g<0 ;<="" kg="" m²s="" td=""></g<0>
K7=(1- α_h) for α_h <0.8	Linear interpolation between table value
$K7 = (1 - \alpha_h) \frac{0.8 + 0.2\rho_f / \rho_g}{\alpha_h + (1 - \alpha_h)\rho_f / \rho_g}$	$CHF_0 = CHF_{G=0,X=0}(1-\alpha_h)C_1$ For $\alpha_h < 0.8; C_1 = 1.0$
CHF table value at $G=0, X_e=0$	For <i>α_h>0.8;</i>
For 10 <g<100 kg="" m²s="" or<br="">-400<g<-50 interpolate<="" kg="" m²s="" td=""><td>$C_{1} = \frac{0.8 + 0.2\rho_{f}/\rho_{g}}{\alpha_{h} + (1 - \alpha_{h})\rho_{f}/\rho_{g}}$</td></g<-50></g<100>	$C_{1} = \frac{0.8 + 0.2\rho_{f}/\rho_{g}}{\alpha_{h} + (1 - \alpha_{h})\rho_{f}/\rho_{g}}$

K9 Pressure out-range factor

Remain from 1986 version (added to chftab06.F)

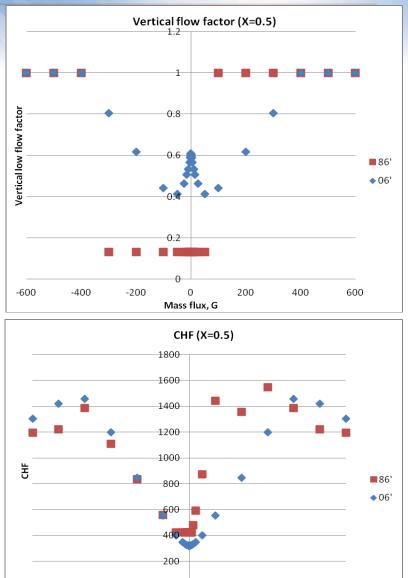
 $K9 = \frac{prop(out)}{prop(border)} \quad \text{where} \quad prop = \rho_g^{0.5} h_{fg} \left[\sigma(\rho_f - \rho_g) \right]^{0.25}$

Vertical low flow factor test

Comparison between versions

- P=1e7Pa, X=0.1, 0.2, 0.5 and 0.8
- 35 cases of different mass flux (G)

Vertical flow factor


- 1986 version factor is independent to mass flux (function of void fraction and density)
- 2006 version factor from interpolated CHF

$$K8 = \frac{f_0 CHF_0 + (1 - f_0) CHF}{CHF}$$

$$CHF_0 = CHF_{G=0, X=0}(1 - \alpha_h)C_1, \quad f_0 = \frac{400 - |G|}{400}$$

• CHF value with geometry factor

- Both version shows different behavior
 - 1986 CHF at -50<G<10*kg/m²sec*
 - 1986 CHF around 100 and 200kg/m²sec

-600

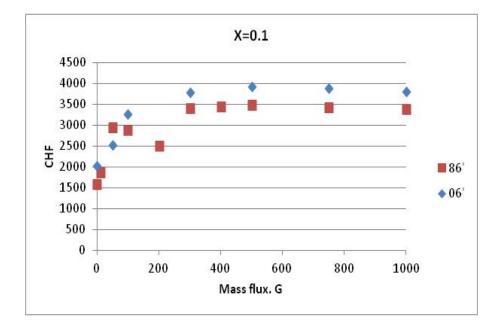
-200

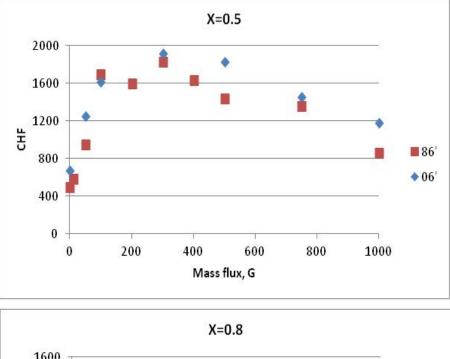
0

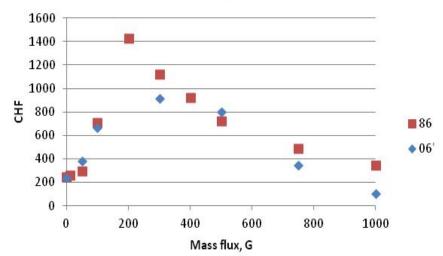
Mass flux, G

200

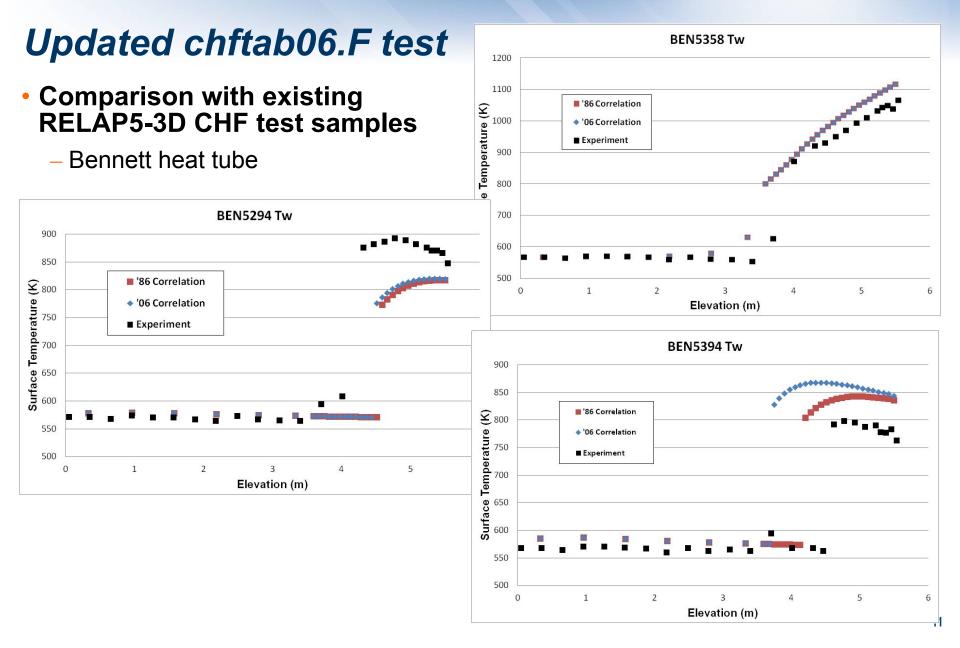
400

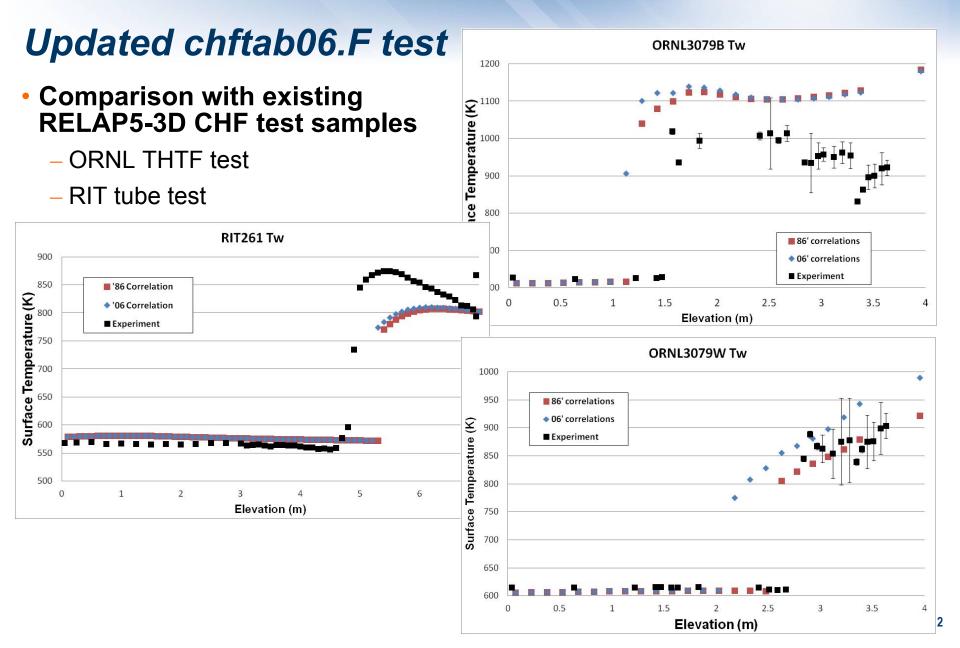

600


-400



CHF Look up table value comparison


- Different behavior shows around 100 and 200kg/m²sec
- 2006 LUT seems smoother



Conclusions

Update completed for chftab06.F

- K1: Sub-channel/tube diameter, cross-section geometry (updated)
- K2: Bundle geometry (updated)
- K3: Mid-plane space factor for 37 elements bundle (CANDU) (same as1986)
- K4: Heated length factor (same as 1986)
- K5: Axial flux distribution factor (same as 1986)
- K6: Radial or circumferential flux distribution factor (updated via guideline)
- K7: Horizontal flow orientation factor (updated)
- K8: Vertical low flow factor (clarify mass flux range coding)
- K9: Pressure out-range factor (remain from 1986 version)
- Test of updated chftab06.F is also performed
 - 2006 CHF LUT is more conservative
- Updates submitted for next code version
- Manual will be updated