9/16/2021

Carlo Parisi, Ph.D.

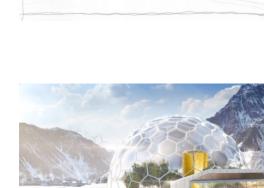
Thermal-Hydraulic Modeling of MARVEL Microreactor

- Microreactor Applications Research Validation and Evaluation (MARVEL) Microreactor Project
- RELAP5-3D Role
- Preliminary Transient Results
- Primary Coolant Test (PCAT) Experimental Facility
- Summary

IDAHO NATIONAL LABORATORY

MARVEL Projects Goals and Objectives

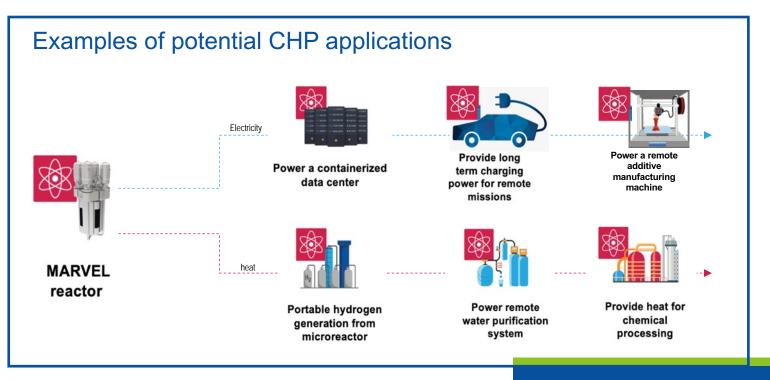
 MARVEL: Microreactor Applications Research, Validation and Evaluation Project

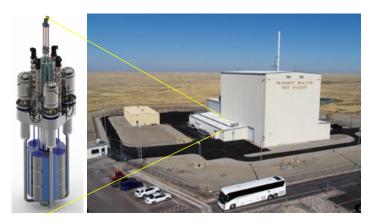

Project Goals:

 Rapid development of a small-scale microreactor that provides a platform to test unique operational aspects and applications of microreactors

Primary Objectives:

- Project shall produce an operational microreactor in the most accelerated timeline possible
- Project shall result in an operational reactor that produces combined heat and power (CHP) to a functional microgrid
- DOE Sponsor Programs:




Microreactor Applications R&D

- Engage potential end user companies (B2B, B2C): interested in bringing application assets for testing and ultimate deployment
- End-users are actively being engaged to plan for integration tests

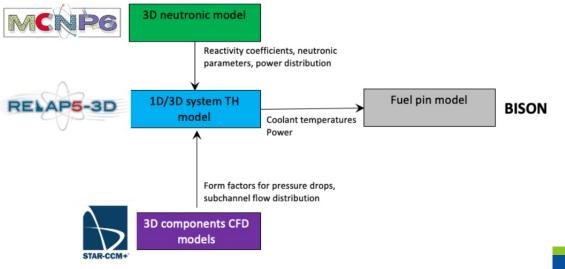
MARVEL Characteristics

- Will be the **53rd** reactor sited at INL
- To be installed at INL's Transient Reactor Test (TREAT) facility
- Pursuing Environmental Assessment (EA) for DOE Authorization (DOE/EA-2146)
 - First reactor to complete EA for National Environment Protection Act (NEPA) compliance, see [1]
 - Draft EA: January 11, 2021
 - FONSI (Finding of No Significant Impact): June 8, 2021
- Inspired by existing designs and technology
 - SNAP-10A space reactor
 - TRIGA fuel

MARVEL reactor at INL's TREAT facility

MARVEL Characteristics

Major Systems	Parameters	Value/Type	
Core	Thermal Power	100 kWth	
	Core Life	2 years	
	Fuel Type	Uranium Zirconium Hydride (UZrH _{1.6})	
	Fuel Uranium Enrichment	<19.75 %U235	
	Maximum Uranium in Core	<30kg U	
Primary Circulation	Number of Loops	4	
	Heat-Transfer Method	Liquid-Phase Natural Circulation	
	Heat-Transfer Fluid	Sodium-Potassium Eutectic (NaK)	
Secondary Circulation	Heat-Transfer Method	Liquid-Phase Natural Circulation	
	Heat-Transfer Fluid	Lead-Bismuth Eutectic (PbBi)	
Reactivity Controls	Reactivity Control Method 1	4 Vertical Control Drums	
	Reactivity Control Method 2	Inherent Reactivity Feedback	
Power Conversion	Power Conversion Technology	4 Frictionless, Free- Piston Stirling Engines	
	Power Conversion Efficiency @500°C inlet temperature	20-25%	
	Electrical Power	18-25 KWe	


MARVEL 3D view

MARVEL Project

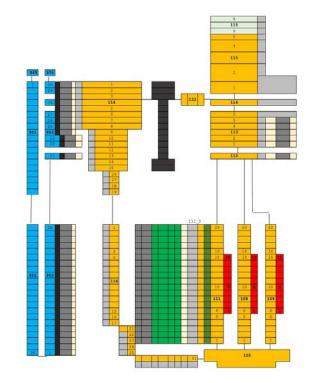
- Main Steps
 - June 2020: Reference Design Completed
 - July-Sept. 2020: Separate Effect Tests Performance
 - Oct. 2020–Jan. 2021: Integral Effects Test Facility (PCAT) Designed
 - Oct. 2020–Jan. 2021: Interim Design Reports Archived
- Reference & Interim Design included thermal hydraulic analyses
 - RELAP5-3D code reference thermal-hydraulic (TH) code

MARVEL M&S Strategy

- Modeling and simulation (M&S) strategy for design and safety analysis
 - Use best-estimate nuclear safety codes and commercial codes with an extensive nuclear pedigree and well-proven reliability
 - Introduce hot-channels factors for modeling thermalhydraulic/neutronic uncertainties
 - Perform independent high-fidelity calculations using commercial CFD code for selected SSCs
 - Validate using 1:1 scale Integral Test Facility (being assembled)

MARVEL Thermal-Hydraulic Design

- Use of INL's RELAP5-3D system thermal-hydraulic code as an M&S workhorse
- The RELAP series of codes have been developed at INL for over 50 years
 - 1966: Idaho scientists began developing RELAP
 - RELAP5-3D is the **flagship** of nuclear reactor system analysis tools → most widely used nuclear reactor accident analysis code
 - Development ongoing (e.g., integration into INL's Multiphysics Object Oriented Simulation Environment (MOOSE) framework)
 - Capability to model liquid metal systems added in the 2000s
 - Several fluid property libraries available (Na, Na-K, Pb, Pb-Bi, Li)
 - <u>Specific correlations</u> for liquid-metal heat transfer (Seban-Shimazaki, Westinghouse)
 - 3D hydraulic components, 3D neutron kinetics



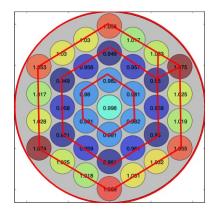
RE

RELAP5-3D TH Modeling

- RELAP5-3D thermal-hydraulic/neutronic model for transient analysis
- Includes primary & four secondary loops, guard vessel, shielding, air cooling riser
- Three independent TH systems using three different fluids:
 - NaK, PbBi, Air
- Core components include single subchannel + hot channel factors
 - Five independent channels
- Reactivity coefficients for 0D neutronic module
- Component materials (e.g., BeO for side reflector)

MARVEL RELAP5-3D nodalization sketch

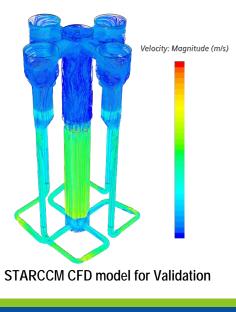
RELAP5-3D TH Modeling


- Special care for M&S of the following key points
 - Pressure losses → hand-calculated, verified by CFD analysis
 - Axial heat conduction effects in the fluids
 - Implemented control-variable based system for taking into account in primary and secondary system [2]
 - Hot Spot Factors
 - Quantify the safety margins including uncertainties
 - Stirling Engine Feedback
 - Control Drums system movement effect for power ramp simulation
 - Implemented using dedicated control-system

	1/0		. 1 10	
m-l	m-1/2	m	m+1/2	m+l
Δx _{m-1}		Δx _m		Δx_{m+1}
T _{m1}	T _{m-1/2}	T.,	T _{m+1/2}	T _{m+1}
ρ _{m-1} C _{m-1}		$\rho_m C_m$	m+1/2	$\rho_{m+1}C_{m+1}$
k _{m-1}		k _m		k _{m+1}
A _{m-1}		Am		A _{m+1}
Δx _{m-1}		Δxm		Δx_{m+1}

Nodalization diagram for the axial fluid heat conduction model

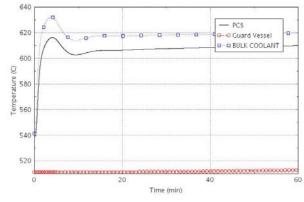
RELAP5-3D Results: Steady-State


- Steady-state results for 37-rod core
- Primary and secondary temperatures controlled for guaranteeing
 - respect of safety margins for fuel and structural materials
 - efficient operation of the Stirling Engines

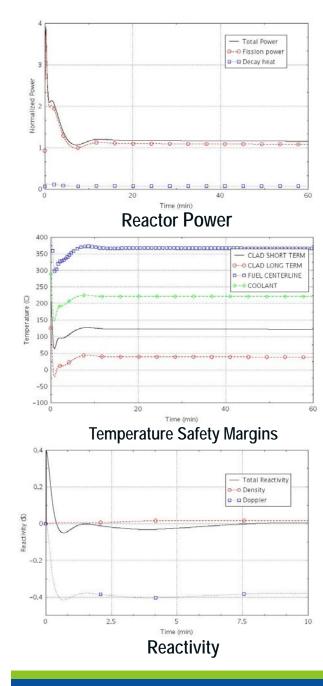
Core 37-rods TH model

 Steady-state model validation using MARVEL full-model STAR-CCM+ CFD simulations

Parameters - Primary & Secondary Side	Values
NaK Inlet Core Temperature, °C	428
NaK Outlet Core Temperature, °C	541
NaK Core Temperature Rise, °C	113
Total Mass Flow, kg/s	1.07
IHX PbBi Minimum Temperature, °C	409
IHX PbBi Maximum Temperature, °C	489
IHX PbBi Mass Flow, kg/s	2.03

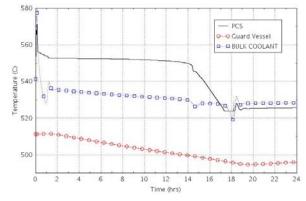


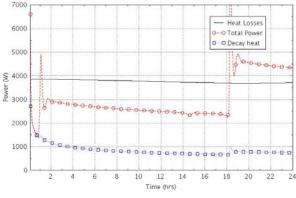
MARVEL Safety Analysis


- Dedicated team of safety experts defining relevant transients/accidental scenarios for safety analyses
 Use of PRA methods
- Safety analyses calculations will be part of TREAT Final Safety Analysis Report (FSAR) addendum
- MARVEL to be licensed by U.S. DOE
- Preliminary calculations part of the EA documents collection [3]
 - Show that the reactor is safe also during Beyond Extremely Unlikely Events (frequency of occurrence< 10⁻⁶ events/year)
 - Analyze unprotected events (failure of scram system)

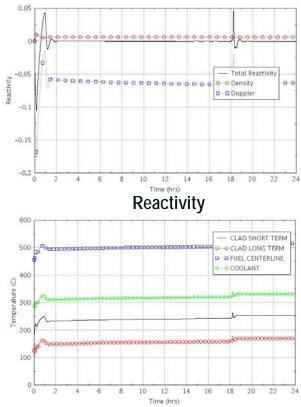
MARVEL Preliminary Safety Analysis: UTOP

- Transient analyses: unprotected transient overpower (UTOP)
 - Step reactivity insertion → 1 CD out from critical position to the mechanical stops
 - No SCRAM
 - Negative reactivity feedbacks counter the power surge → system returns to a steady higher power and higher temperature
 - No safety concerns during 1-hr transient


PCS & SCS Temperatures

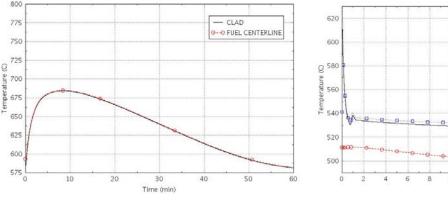

MARVEL Preliminary Safety Analysis: ULOHS

Transient analyses: unprotected loss of heat sink (ULOHS)


- All four Stirling-engines heat removal capabilities lost at t = 1.0 s
- No SCRAM
- Reactor cooled solely by heat losses via the guard vessel only
- Reactor shutdown due to intrinsic negative reactivity
- Return to power caused by
 - Fuel cooldown
 - Natural-circulation restart
 - Power < guard vessel heat losses for ~18 hr
- No safety concerns during at least the first 24 hr

PCS & SCS Temperatures

Reactor Power & Heat Losses

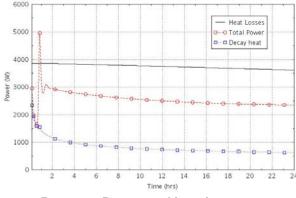


Temperatures Safety Margins

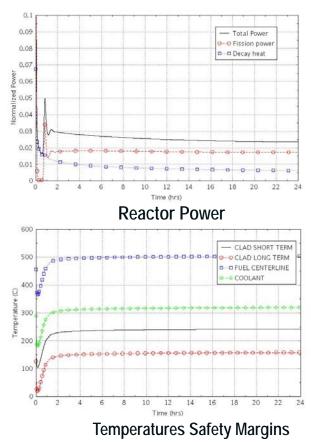
MARVEL Preliminary Safety Analysis: ULOF

- Transient analyses: unprotected loss of flow (ULOF)
 - Total blockage of all four downcomers at t = 0.0 s (assuming four IHX damages)
 - No SCRAM
 - Loss of secondary-side (IHX) heat removal capabilities
 - Reactor only cooled by heat losses through the guard vessel
 - Reactor power self-reduced
 - Hot-spot clad temperature not a safety concern, due to the reactor's self shut-down features

Hot Spot Temperatures

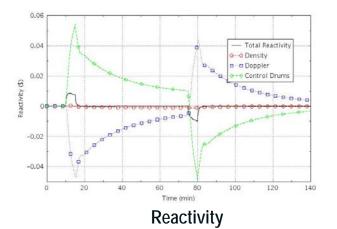

PCS & SCS Temperatures

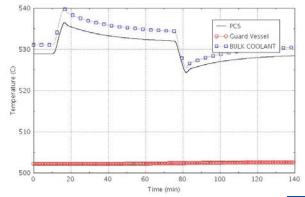
Time (hrs)

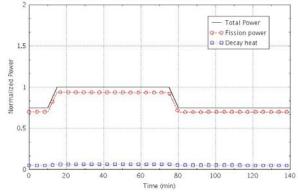

PCS

9--O Guard Vessel

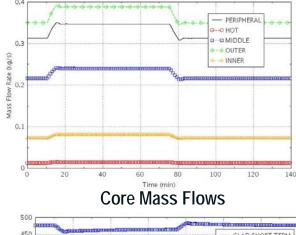
BULK COOLANT

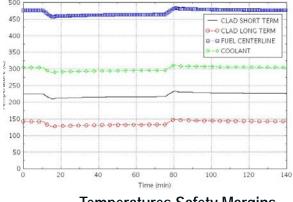



Reactor Power & Heat Losses

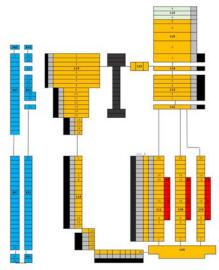

MARVEL Power Ramps Simulation

- Transient Analyses: power ramps
 - Simulate reaction to imposed power change: 75/100/75 % $\ensuremath{\mathsf{P}_{\text{nom}}}$
 - All four Stirling engines in operation
 - Control system simulate reactivity insertion by CD
 - Reactivity insertion vs position
 - Drum rotation speed
 - Assumption: "Turbine follow" mode → Stirling engines reac remove power produced by the reactor
 - Power changes imposed (simulate ±5% P_{nom}/min ramps)
 - PCS temperature rates: ~1.2°C/min
 - CD reactivity rate: ~1.2 cents/min





Reactor Power


Temperatures Safety Margins

MARVEL Preliminary Safety Analysis Summary

- Primary safety analysis did not identify safety concerns
 - UTOP 0.4\$ limiting case, but no safety threshold violated
 - ULOF → corrected conservative BC, lower temperatures obtained → to be rerun in the future with axial conduction effects → further safety margins increase expected
 - ULOHS \rightarrow no safety concerns
- First "load follow" case simulated: 75/100/75% P_{nom}
 - Reactivity insertion rates and PCS temperature rates seems acceptable

MARVEL Integral Test Facility PCAT

- RELAP5-3D used to design the MARVEL integral test facility PCAT
- Full power (100 KW_{th}), 1:1 electrically heated facility
- "Made in INL" → fabrication completed; assembly ongoing
- RELAP5-3D used for facility pre-test and design
 - Leveraged reactor model
- PCAT will provide data for
 - RELAP5-3D model validation
 - Streamline manufacturing methods
 - Component testing
 - Investigation of operational procedures/operator training

RELAP5-3D PCAT model

PCAT components at INL MFC

Next Steps

- RELAP5-3D MARVEL-related activities for FY-22
 - Analyze PCAT experimental results
 - Calculate TH operational transients
 - Finalize FSAR calculations
- Looking forward to FY-23 (MARVEL fuel load, criticality,...)

- MARVEL project is a pioneering effort to develop a small microreactor that would work as testbed for the next generation nuclear technology
 - 53rd INL reactor, first after many decades
- RELAP5-3D is the **reference TH code** for MARVEL
 - Demonstrated its versatility and robustness in M&S of this novel technology

[1] NEPA. N. d. "DOE/EA-2146: Microreactor Applications Research, Validation and Evaluation (MARVEL) Project; Idaho National Laboratory." https://www.energy.gov/nepa/doeea-2146-microreactorapplications-research-validation-and-evaluation-marvel-projectidaho.

[2] C. B. Davis. 2007. "*Evaluation of the Use of Existing Relap5-3D Models to Represent the Actinide Burner Test Reactor.*" INL/EXT-07-12228, Idaho National Laboratory. https://doi.org/10.2172/911901.

[3] C. Parisi. 2021. "Primary Coolant and Decay Heat Removal System", INL-EXT-21-61284, Idaho National Laboratory.