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Overview
• Point design objectives
• Reactor description
• Thermal-hydraulic assessment
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Missions
• Primary Mission: Irradiation of gas reactor technology test articles

– Fuel samples, pins, assemblies
– Instrumentation
– Cladding, structural, control rod materials
– Corrosion and compatibility behavior of structural materials in other fluids

• Liquid sodium (Na)
• Liquid salt (FLiBe)
• High-pressure light water (H2O)
• High-pressure, high-temperature gases

• Secondary Missions:
– Generation of electricity

• Steam cycle
• Option to increase outlet gas temperature to 750°C
• Relatively long, stable power cycles

– Production of commercial and medical isotopes
– Production of high-temperature heat via secondary heat transfer loops 

• Hydrogen production
• Chemical process testing
• Heat exchanger testing
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Point Design Approach
• Primary Goals  

– Maximize thermal and fast flux 
– Fuel cycle length ≥90 days

• Constraints 
– Peak fuel steady-state temperature (≤1250°C)
– Use existing hexagonal block design
– Accommodate 4-meter long test article
– Prefer not to melt irradiation facilities

• Variables  
– Total core power (50-400 MW) 
– Number of fuel columns (6, 7, 12, 18)
– Number of fuel blocks per column (4, 5, 6, 7, 8)
– Arrangement of fuel columns in core
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Fuel Block Description
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Fort Saint Vrain (FSV) fuel block.



Core Arrangements Considered
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Test Reactor Point Design Features
• High-temperature gas-cooled reactor technology
• 200 MW
• High-pressure helium gas coolant (7 MPa, 650°C outlet)
• Prismatic graphite blocks (fuel + reflector) 
• 5 rings of hexagonal blocks + permanent side reflector (PSR)
• 12 fuel columns
• 8 fuel blocks per column
• Core height = 9.2 m
• Core diameter = 3.4 m
• Large number of irradiation facilities (large volumes and lengths)

7



Core Description
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HTGR Test Reactor Facilities

Hex
Ring No.

No. of 
Loops

No. of 
Tubes

Test 
Diameter

(cm)

Test 
Length

(m)

Test 
Volume 

per 
facility
(liters)

Total Test 
Volume
(liters)

1 1 0 5.4 6.34 14 14
2 0 0 ---- ---- ---- ----
3 0 15 8.0 6.34 30 450
4 3 9 5.4/8.0 6.34 14/30 42/270
5 0 12 8.0 6.34 30 360

Total 4 36 1136



Thermal-Hydraulic Assessment Overview

• RELAP5-3D model description
• Steady state conditions
• Safety features
• Accident simulation results
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RELAP5-3D Input Model

• Reactor vessel
• Water-cooled, natural convection reactor cavity cooling system (RCCS) 

for decay heat removal during accidents
• Fixed coolant inlet temperatures
• Primary flow rate adjusted to get desired coolant outlet temperature
• Irradiation loop coolant flow through center facility
• Helium coolant flow (not primary coolant) in gap between irradiation 

loop and pressure boundary tube



Reactor Vessel 
Nodalization
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• Each ring modeled
• Fuel and reflector blocks in 

Ring 3 modeled separately
• Flow paths

– Through coolant holes
– Between blocks
– Around control rods
– Around irradiation 

positions
– Crossflow between rings

• Axial and radial conduction
• Radial radiation



Steady state conditions
Parameter 2-mm gaps 3-mm gaps 4-mm gaps

Coolant inlet temperature (°C) 325 325 325
Coolant outlet temperature (°C) 650 650 650
Coolant flow rate (kg/s) 117.2 117.3 117.3
Effective core bypass at core outlet (%) 27 31 35
Peak fuel temperature (°C) 1159 1194 1240
Center reflector peak temperature (°C) 648 645 651
Ring 3 reflector peak temperature (°C) 585 567 558
Ring 4 reflector inner peak temperature (°C) 562 550 548
Ring 4 reflector outer peak temperature (°C) 392 383 380
Ring 5 reflector peak temperature (°C) 357 348 343
PSR peak temperature (°C) 336 332 331
Core barrel peak temperature (°C) 329 328 328
Reactor vessel peak temperature (°C) 317 317 317
RCCS heat removal (MW) 0.44 0.44 0.44
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Steady state peak fuel temperatures
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Safety features
• Passively safe design
• Tristructural isotropic (TRISO) fuel
• Inert coolant
• Large thermal capacity in core and reflectors
• Long, slow transients
• No energized systems required for decay heat removal

– Conduction
– Radiation
– Natural convection of water and gas

• Fuel temperature guidelines
– 1250°C maximum during steady state operation
– Within Advanced Gas Reactor time-at-temperature envelope 

during accidents and transients
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Accident analyses

• Loss-of-forced convection cooling is primary event
– Depressurized conduction cooldown (DCC)

• PCS pressure boundary breached
• Expected to be limiting case for fuel temperatures

– Pressurized conduction cooldown (PCC)
• PCS pressure boundary intact

• Boundary conditions
– Reactor scram at transient initiation
– Primary coolant and irradiation loop flow coastdown

• 1 s for DCC
• 5 s for PCC

– 1-s depressurization imposed for DCC
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Sensitivity studies

• Axial power shape (cosine vs. flat)
• Scram delay (1 s or 10 d)
• Increased operating temperatures (350/750°C)
• Maintain cooling flow to center irradiation loop
• Blocking some core bypass flow paths
• Temperature of helium entering through break
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DCC peak fuel temperatures
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DCC reflector axial average temperatures (4-mm gaps)
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DCC reactor vessel peak temperature
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DCC decay heat and RCCS heat removal
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DCC central reflector and irradiation tube axial 
average temperatures
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DCC central reflector and irradiation tube axial 
average temperatures with helium cooling flow
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PCC peak fuel temperatures
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HTGR Test Reactor Accident Analysis Summary

• Peak fuel temperatures during the conduction cooldown transients 
were 150-250°C below steady state temperatures.

• Irradiation loop tube temperatures will likely be above code design 
limits, though well below the melting point, unless sufficient internal 
cooling can be maintained.

• Irradiation tubes for drop-in experiments (cooled by primary coolant 
flow) can be made of high melting temperature materials (titanium, 
molybdenum) as they will not be pressure boundaries.
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