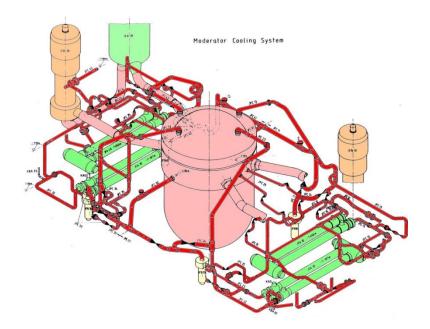
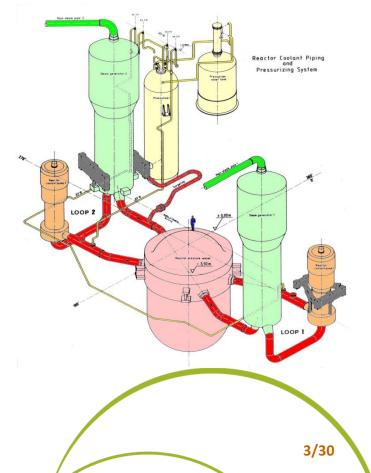


Nuclear and INdustrial Engineering

The BEPU Evaluation Model with RELAP5-3D[©] for the Licensing of Atucha-II NPP

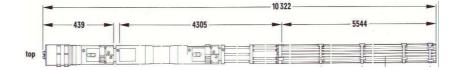
A. Petruzzi, M. Cherubini, M. Lanfredini (UNIPI-NINE) F. D'auria (UNIPI), O. Mazzantini (NA-SA)

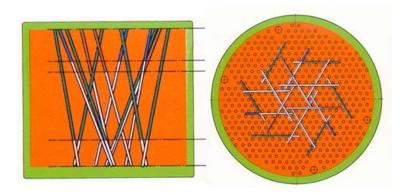

- Atucha-II NPP short description
- The BEPU approach for the Licensing of Atucha-II NPP
 - Boundary and Initial conditions
 - Selected Scenarios and computational tools
- RELAP5-3D© Nodalizations
 - o 60 channels (coupled with the I&C code)
 - 280 channels (coupled with the 3D-NK code)
 - o **Containment**
- Qualification of the RELAP5-3D© Evaluation Models
 - Approach adopted for the Scaled Analyses
 - Verification of the I&C modelling
- Selected example
 - o Turbine Trip
 - Control Rod Ejection
 - o 2A-LOCA in CL
- Conclusions

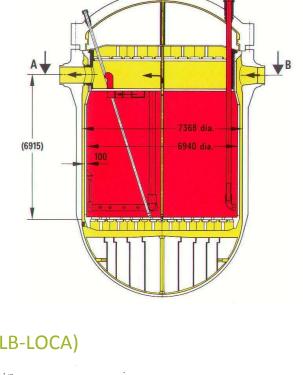


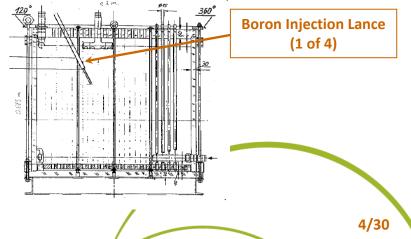
Atucha-II NPP: short description

- Primary circuit characteristics (D2O cooled and moderated)
 - o 2 U-Tubes SG, 2 MCP
 - Primary side pressure: 11.5 MPa
 - Primary side temperatures: 278 °C at RPV inlet, 313.3°C at RPV outlet
 - Thermal power: 2161 MW
- Moderator circuit (Normal operation and RHR\ECC)
 - Same pressure of the Primary circuit
 - AVG Moderator Temperature: 170-220 °C
 - 4 U-Tubes HX for Moderator cooling / FW pre-heating



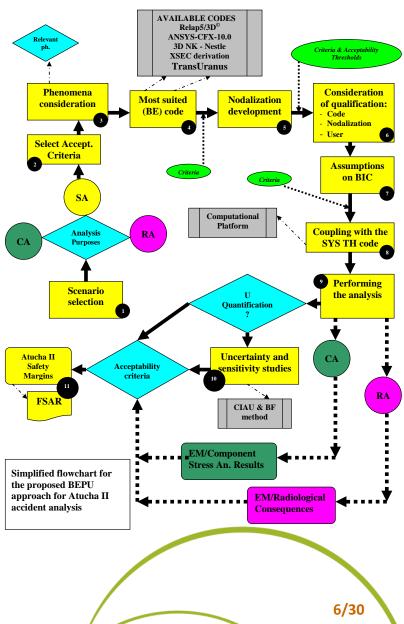



Atucha-II NPP: short description

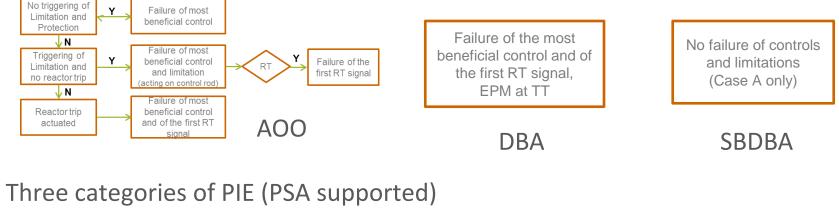

- RPV characteristics
 - o 451 fuel channels vertically oriented
 - 37 fuel rods per channel (UO2 nat)
 - On-line refueling
 - Active core length: 5,3m
 - Oblique Control Cods

- Reactivity control system
 - Moderator temperature
 - Oblique Control Rods
 - Emergency Boron Injection System (JDJ) → during RIA (e.g. LB-LOCA)

- Methodology for accident analysis in NPP licensing
 - Comply with the established Regulatory requirements
 - Adequate and complete spectrum of events
 - \checkmark deterministic and probabilistic methods
 - Availability of qualified tools and procedure for accident analysis
 - ✓ Conservative, BEPU
- Atucha-II Accident analysis for FSAR \rightarrow "The BEPU description document"
 - 1. Evaluation of the possibility to use a BEPU approach within the context of the current national Regulatory Authority requirements
 - 2. Review of the experiences acquired in the use of Best Estimate analyses for licensing
 - 3. Structure of the BEPU
 - a) Categorization of PIE
 - b) Grouping of events
 - c) identification of analysis purposes
 - d) identification of applicable acceptance criteria
 - e) 'General scope' Evaluation Model (EM) and of related requirements (from expected phenomena)
 - f) Selection of the qualified computational tools + BIC
 - g) Characterization of assumptions for the Design Basis Spectrum
 - h) Performing the analyses
 - i) Adopting a suitable uncertainty method



The BEPU approach


- "The BEPU description document" focuses on:
 - The roadmap pursued for the analysis foresaw the use of nominal conditions for the NPP parameters and the failure of the most influential system
 - Preparatory code run per each scenario modelling all the NPP system (full I&C) to identify the worst failures
 - The Selection of the codes and the interconnection among them
 - Qualification of the computational tools (development of the SCCRED)
 - ✓ Best estimate computer code
 - Nodalization (procedure for development and qualification)
 - Uncertainty methodology (procedure for the qualification)
 - Computational platform (coupling and interfacing)
 - The adopted methodology for Uncertainty Evaluation (CIAU)

- Initial condition in Atucha-II safety analyses
 - o "normal operation shall be assumed as the initial plant condition for the analysis of chain of events. In each case, the most probable operating condition of the plant shall be chosen in view of the effects of an event"
 ✓ Take credit of the acceptable limitation system
- Boundary condition (for I&C) based on full BE calculation (Case A, Case B)

- AOO: f > 10e-2/year
- O DBA : 10e-5/year< f > 10e-2/year
- SBDBA : f < 10e-5/year

2A-LOCA is a SBDBA

- 83 scenarios subdivided in 9 families identified.
 - Three evaluation purposes for each scenario (RCA, CSA, CBA)

The BEPU approach

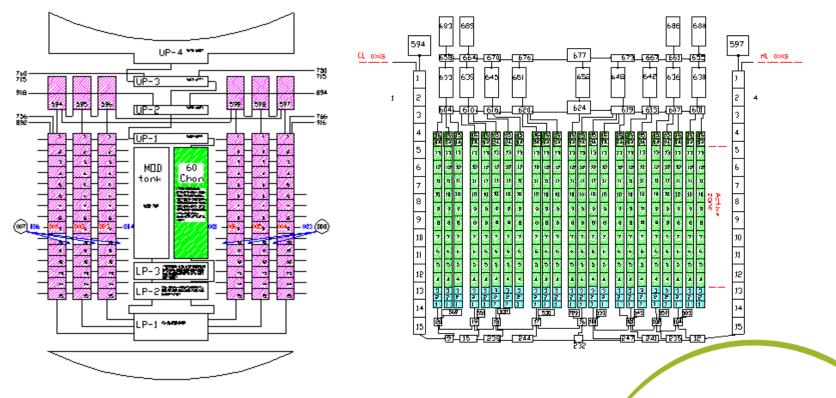
No	Transient	Section FSAR	Adopted Evaluation	Class of Accident
			Model	
	Increase in Heat Removal by the Secondary	15.1		
	System Feed-Heater Train System Malfunctions that			
1	result in a Decrease in FW Temperature (Loss of	15.1.1	CSA	AOO
1	low Pressure Feed Heater Trains)	15.1.1	COA	A00
	FW System Malfunctions that result in an			
2	Increase in FW Flow (Stuck Open FW Control	15.1.2	CSA	AOO
-	Valve)			
3	Steam Pressure Regulator Malfunction or Failure	15.1.3	CSA	AOO
-	that results in Increasing Steam Flow			
	Inadvertent Opening of a SG-RV or Safety			
4	Valve (Stuck Open Isolation of Safety Valve as a	15.1.4	CSA	DBA
	Single Failure)			
Spe	ctrum of Steam System Piping Failures inside and	15.1.5		
	side of Containment (MSLB)		-	
5	Leak of MS Line inside the Containment		CSA/ <mark>RCA/CBA</mark>	DBA
	2AMS Line Rupture Downstream Isolation Valve		CSA/ <mark>CBA</mark>	DBA
7	2A MS Line Rupture Outside Containment		CSA/RCA	DBA
8	Inadvertent Connection of the DHRS to the FW	15.1.6	QA	AOO
	System			
9	Inadvertent Closing of the Moderator Cooler	15.1.7	CSA	A00
	Bypass CV	15.0		
	Decrease in Heat Removal by the Secondary	15.2		
10	System (part 1 of 2)	15.2.1	CSA	A00
10	Steam Pressure Regulator Malfunction or Failure	15.2.1	CSA	A00
11	that results in Decreasing Steam Flow Loss of Electric Load	15.2.2	CSA	AOO
	Turbine Trip (Closure of Stop Valve)	15.2.2	CSA	A00 A00
	IV Malfunction	15.2.3	-	AUU
	Inadvertent Closing one MSIV	15.2.4.1		A00
	Inadvertent Closing all MSIV	15.2.4.2		DBA
	Loss of Condenser Vacuum	15.2.5	CSA	AOO
	ergency Power Mode (EPM)	15.2.6		
	Coincident Loss of Onsite and External (Offsite)	15.2.6.1	CSA	A00
	AC Power to the Station (Short-term EPM)			
17	Coincident Loss of Onsite and External (Offsite)	15.2.6.2	RCA	DBA
	AC Power to the Station (Long-term EPM)			

No	Transient	Section FSAR	Adopted Evaluation Model	Class of Accident			
De	crease in Reactor Coolant System Inventory (part 2 of 2)	15.6					
Spec	trum of LOCA	15.6.5	-				
Prim	nary Coolant System LOCA 15.6.5.1 -						
Sma	11 Break LOCA	15.6.5.1.1	-				
50	30 cm2 LOCA cold	15.6.5.1.1.1	CSA	DBA			
51	100 cm2 LOCA cold	15.6.5.1.1.2	CSA	DBA			
52	Break of the Refueling Nipple	15.6.5.1.1.3	CSA	DBA			
Inter	mediate Break LOCA	15.6.5.1.2	-				
53	200 cm2 LOCA cold	15.6.5.1.2.1	CSA/CBA	DBA			
54	LOCA in PRZ Surge-Line	15.6.5.1.2.2	CSA	DBA			
55	0.1A LOCA cold	15.6.5.1.2.3	CSA/ <mark>RCA</mark> /	DBA			
56	0.1A LOCA cold with Sump Swell Operation	15.6.5.1.2.4	QA	DBA			
	e Break LOCA	15.6.5.1.3	-				
57	2A LOCA cold (DEGB. Different Break Sizes and Positions are investigated)	15.6.5.1.3.1	CSA/ <mark>RCA</mark> /	SBDBA			
58	2A LOCA hot 🛛	15.6.5.1.3.2	CSA/CBA	SBDBA			
Mod	erator Loop LOCA	15.6.5.2	-				
59	50 cm2 Small Leak in Moderator Suction Line	15.6.5.2.1	CSA	DBA			
60	0.1A Leak in Moderator Injection Line	15.6.5.2.2	CSA	DBA			
61		15.6.5.2.3	CSA	SBDBA			
62	Break in the Largest Pipe connected with the Moderator Lines	15.6.5.2.4	CSA	DBA			
63	Break in the Moderator Line at RPV Connection (DEGB)	15.6.5.2.5	CSA	SBDBA			
64	Inventory	15.6.6	CSA	A00			
	Radioactive Release from a Sub-system	15.7					
65	Failure	15.7.1	RCA	DBA			
66	Radioactive Liquid Waste System Leak or Failure	15.7.2	RCA	DBA			
67	Radioactive Release due to Liquid Tank Failure	15.7.3	RCA	DBA			
68	Design Bases Fuel Handling Accidents	15.7.4	_ (2)	DBA			
69	Spent Fuel Cask Drop Accident	15.7.5	QA	DBA			
70	Failure During Tritium Extraction Operation and Storage	15.7.6	RCA	DBA			

- Qualified computational tools adopted in the BEPU FSAR of Atucha-II
 - More than ten computer codes with several interaction (TH-SYS code is the central process)
 - More than 20 nodalization developed
 - Suitable qualification process
 - Uncertainty evaluation (CIAU)

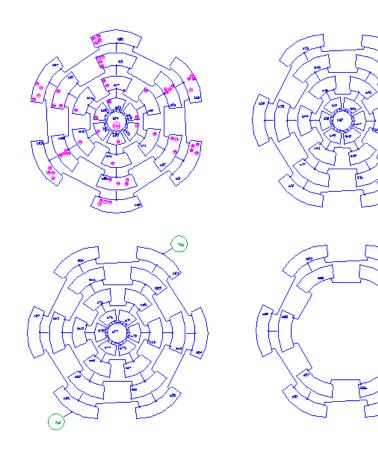
FP BARRIERS	Materials & Components			Techr	nologica	l Are	as			
		CONTAINMENT	fraulics IOR COOLING SYSTEM	CFD	STRUCTURAL MECHANICS & FUEL	NEVTR	ONICS	0EME DEPO	SEC RATION JETION	FP RELEASE & TRANSPORT, DOSE CALCULATION
FUEL MATRIX	UO, PELLETS					-		-		<u> </u>
	GAS FUEL GAP	RE			TRANS URANUS					TRANS
CLAD	Zircalloy-4 CLAD		찌						_	
	FUEL ASSEMBLY	Ą	REL				NESTLE	ORIGEN	HELIOS	~
	DIO COOLANT	UN L	P					SEN	Sol	CHOICE
	Zircalloy-4 PRESSURE TUBE	DYNETZ	01 25				, In the second s			USNRC REGULA RELAPS-3D FP
	D ₂ O MODERATOR	m	å	ANS			H	+		S-3D
PRESSURE BOUNDARY	MODERATOR TANK REACTOR PRESSURE VESSEL	R	0	SYS-CF)	ANSYS MECHANICAL					USING REGULATORY GUID RELAPS 3D FP TRANSP CHOIGE ON CONTAINMENT
	MAIN CIRCULATION LOOPS		‡	^						ISPO ID
CONTAINMENT	SPHERICAL STEEL CONTAINMENT	RELAP	5							GUIDE 1.183
	CONCRETE CONTAINMENT BUILDING	3D ©								
ENVIRONMENT	ID OF SOURCE TERM									PATH)
	ESTIMATE ON DISPERSION AND DOSE									MACCS

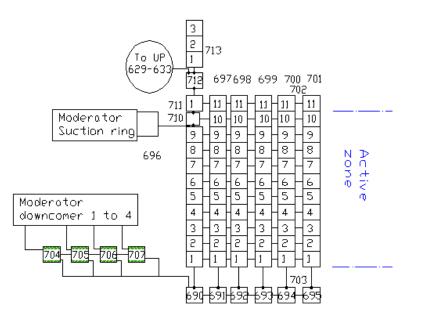
#	CODE	NODALIZATION	OBJECTIVE	#	CODE	NODALIZATION	OBJECTIVE
1-1		60-ch	D	13-3	ANSYS-CFX	Boron Lances	S
2-1		280-ch	D	14-4	ANSYS	RPV-w	D
3-1	RELAP5-3D© (only TH Model)	451-ch	S	15-5	TRANSURANUS	Fpin	D
4-1	(only the model)	DNBR	D	16-6	NESTLE	451-10nk	D
5-1		CONT-R	D	20-8	MCNP	Core-M	S
6-2	DYNETZ	I&C-AT2	D	21-9	NEWT-ORIGEN	FCell-S	D
7-3		MOD-T	D	24-13	DRAGON	FCell-D	S
8-3		DC-LP	D (PTS)	25-13	MCNP-ORIGEN	FCell-M	D
9-3	ANSYS-CFX	UP	s	26-14	RELAP5-3D© (Rad Model)	60ch-3D	D
10-3		FC Inlet	S	27-15	MELCOR MACCO	ENV-M	D
11-3		FC outlet	S	28-15	MELCOR-MACCS	CONT-M	S
12-3		Grid Spacer	S	30-17	RODOS	ENV-R	S



RELAP5-3D[©]: 60 channels

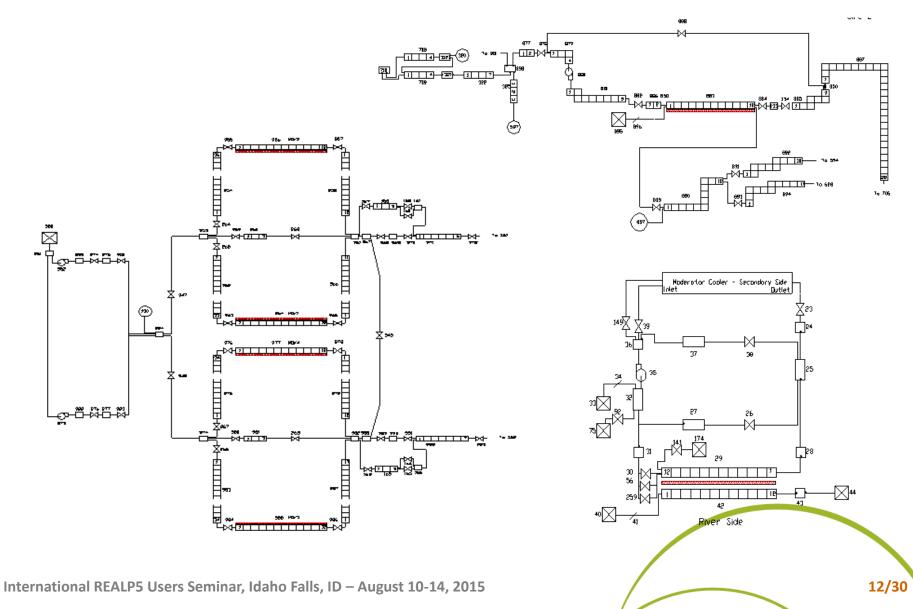
- The RELAP5-3D© 60-Channels Nodalization
 - Main nodalization adopted in the safety analyses of Atucha-II FSAR
 - Fictitious 3D approach
 - Two different coupling developed for I&C modelling (Dynetz)


Code resources	Number
Volumes	2609
Junctions	3139
Heat Structures	2861
Mesh Points	22195
Trips	45
Control Variables	4316

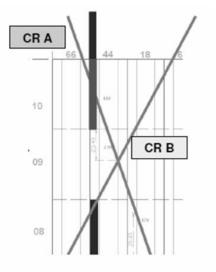


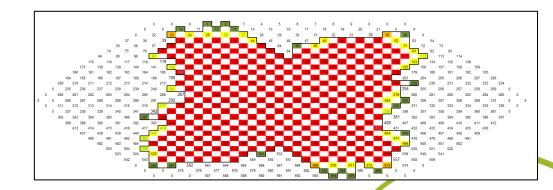
RELAP5-3D[©]: 60 channels

Sample of the Fictitious 3D developed with CFD support calculations
 Adopted in the BEMUSE project (Zion NPP) and UPTF calculations



RELAP5-3D[©]: 60 channels

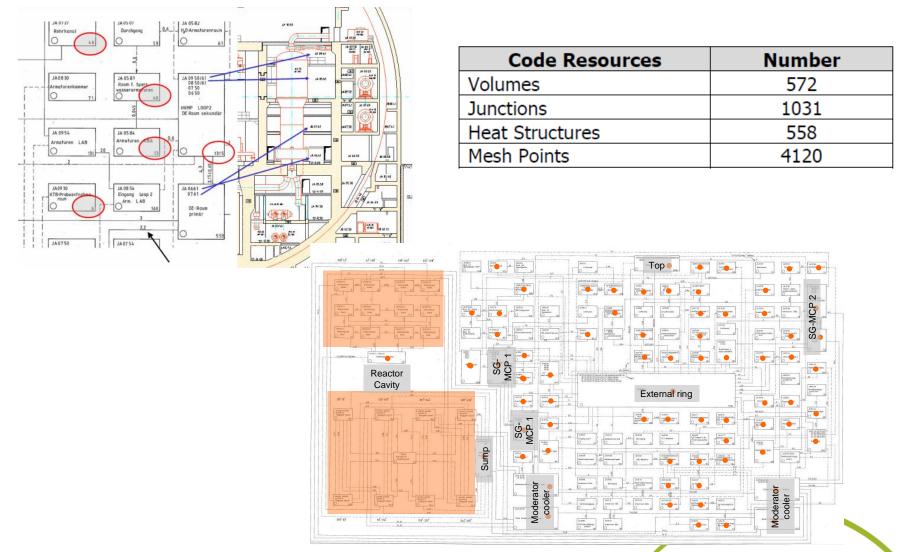

• Sample of the nodalization of the SS and ML systems



- The RELAP5-3D© 280-Channels Nodalization
 - o 3D-NK NESTLE model
 - ✓ Special technique to a take into account the Control Rod inclination (XS corrected with MCNP calc.)
 - MULTID components to model the Moderator Tank
 - 2 different techniques for CFD interfacing (boron injection)
- Inclined control rods (17°-25°) constituted by 2 different material (axially)
- "fictitious moderator tank" approach for boron feedback
 - o Boron dilution (CFD) → boron concentration at 3D-NK resolution level

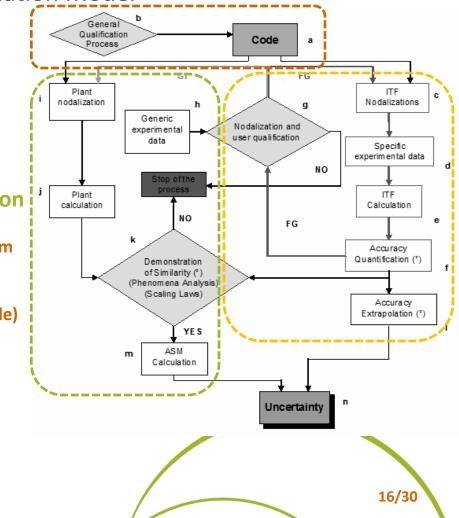
Code resources	Number	Code resources	Number
3D components	3	Geometry	hexagonal
Volumes	9770	Axial layer	12
Junctions	12864	Number of rings	14
Heat Structures	8157	Zones	4164
Mesh Points	52895	Regions (vol\HS)	2\1
Trips	45	Compositions	1670
Control Variables	40	Control rod groups	281

RELAP5-3D[©]: Containment


14/30

- The RELAP5-3D $^{\odot}$ Containment nodalization \rightarrow pressure peak (e.g. 2A LOCA)
 - Careful investigation of the code capability
 - ✓ No Severe Accident, steam explosion, hydrogen combustion phenomena
 - ✓ Fission product distribution only in liquid phase
 - Limited data for mechanical loads on structures and components
 - Relevant phenomena can be investigated with **proper nodalization techniques**
 - ✓ Discharge of water and steam in the containment
 - Expansion of the steam in the containment rooms
 - ✓ Max pressure peak occurrence in short term
 - Heat exchange between the discharge water and containment environment and thermal structures
 - ✓ Condensation of the steam
 - $\checkmark\,$ Collection of the water from the break and condensing water
 - $\checkmark\,$ Injection of the collected water in the primary system
 - Specific care in modeling the obstacles (water on the floor and pool formation), rupture disks and fuse doors

Accident Group	Mass sources	Energy sources	Radioactivity sources	Mechanical and thermal loads on structures/components
Group I (PS break)	Relevant	Relevant	Relevant	Relevant
Group II (SS break or isolable PS break)	Not Relevant	Relevant	Negligible	Relevant
RELAP5-3D capability	Full	Full	Partial	Partial



• Sample of the nodalization scheme and adopted code resources

- The SCCRED methodology was rigorously adopted (Qualification of the developed computational tools)
- The Features of Atucha-II NPP require a specific approach for the Kv scaling analyses for the assessment of the Evaluation Model
 - Demonstration of Code Phenomena Coverage
 - Code validation
 - ✓ Computer code
 - ✓ Nodalization Techniques
 - ✓ Accuracy evaluation
 - ✓ User qualification
 - Qualification of the Atucha-II nodalization
 - ✓ Identification of the system/sub-system
 - Nodalization techniques @ system/sub-system level
 - ✓ "Kv+CT" analyses @ system/sub-system level
 - ✓ Verification of the I&C simulator (code-to-code)

Qualification of the R5-3D EM

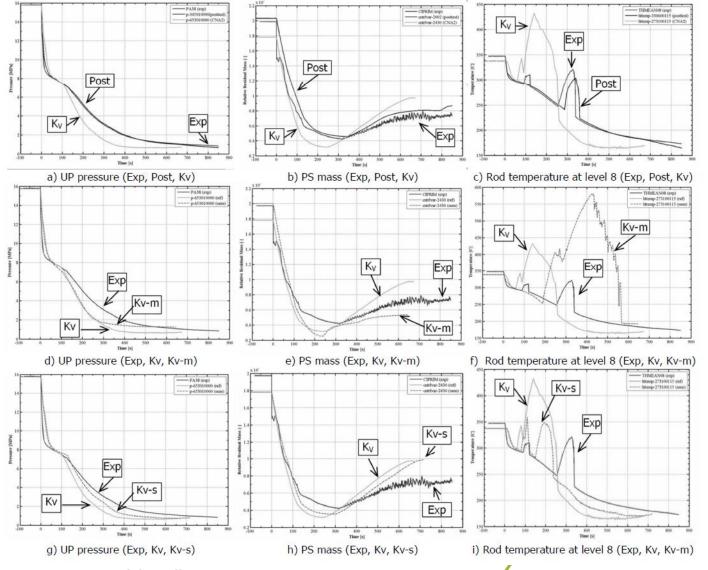
- Nine different tests performed on five ITF selected for the "on transient" qualification of the Atucha-II nodalization (No prototypical ITF exists)
 - 9 qualified calculations (SCCRED)
 - Multiple similarity analyses at **full system** and **system/subsystem level**
- The presence of the moderator system requires proper Kv scaling approach
 - "Correction" of the power-to volume scaling factor (power and volume)
 - Sensitivity calculation considering the moderator tank

- The verification of the I&C simulator consider 10 NON-LOCA scenarios
 - Consider the actuation of the different I&C systems
 - Consider different plant status
 - Qualitative and quantitative analyses performed

• Scaling factors and selected test

No	Parameter	Reference CNA-II scaled model (w/o Moderator)	Sensitivity with Moderator					
		Steady-State Setup						
1	Power, W	$f \cdot W^{0,9}_{CNA2}$	$f \cdot W_{CNA2}$					
2	Pump velocity, v	np velocity, v $f \cdot v_{CNA2}$						
3	PS pressure, P	P _{ITF}						
4	CL temperature, T _{CL}	T _{cL} ^{TF} adjust SS conditions (pressure, FV						
5	Linear heat rate, LHR	LHR _{CNA2} + sample	with LHR ^{max}					
6	PRZ volume, V _{PRZ}	$V_{PRZ}^{CNA2} \cdot \frac{V_{CNA2}^{PS}}{V_{CNA2}}$	V _{PRZ} ^{CNA2}					
		Transient Setup						
7	Break area, Abrk	A ^{ITF} _{brk} · K	Ť					
8	Accumulator: a) height b) total volume c) liquid volume d) inj. line pressure loss e) initial pressure f) liquid temperature	a) $H = H^{TF}$ b) $V_{tot} = V_{toT}^{TF} \cdot K_T$ c) $V_{iiq} = V_{iiq}^{TF} \cdot K_T$ d) K_{ioss}^{TFF} e) $P = P^{TTF}$ f) $T = T^{TFF}$						
9	HPIS/LPIS: a) supplied flow b) liquid temperature c) setpoint	a) $\dot{m} = \dot{m}^T$ b) $T = \dot{c}$ c) as in exp	Tur					
10	Power a) scram setpoint b) decay curve	a) as in exp b) experimental	relative curve					
11 12	Secondary side pressure FW system a) flow b) temperature	As in experiment (impose a) procedure as i b) T = T	in experiment					

#	Facility	Test	Туре	CNA-II Phenomena	CNA-II System/Sub-System	
				PRZ pressurization/depressurization		
				Mass inventory variation	PRZ and Surgeline	
				PRZ discharge		
1	LOBI MOD1	A1-06	2A CL LOCA	Core heat exchange related phenomena	Core	
				PS mass distribution and depressurization	RCS	
				Core related phenomena (refilling,	Core	
				flooding, quenching,)	Core	
				SG pressurization/depressurization	SG SS	
				Mass inventory variation	50 55	
2		A2-81	CL SBLOCA	PS-SS heat exchange	SG SS and PS interface	
				Core heat exchange related phenomena	Core	
				Natural circulation occurrence	RCS (Core, RPV, U-tubes, Leg	
				Core heat exchange related phenomena	Core	
3		A1-83	0.1 A CL LOCA	PS mass distribution and depressurization	RCS	
5		A1-05	0.1 A CE LOCA	Core related phenomena (refilling,	Core	
	LOBI MOD2			flooding, quenching,)	Colle	
				SG pressurization/depressurization	SGISS	
				Mass inventory variation	50.55	
				PS-SS heat exchange	SG SS and PS interface	
4		BT-15-16	Loss of one MFW pump	PRZ pressurization/depressurization		
				Mass inventory variation	PRZ and Surgeline	
				PRZ discharge	···	
				Core heat exchange related phenomena	Core (high pressure condition:	
				PS-SS heat exchange	SG SS and PS interface	
				PRZ pressurization/depressurization	So bo and to interface	
5		Test #03	est #03 Stuck open PRZSV	Mass inventory variation	PRZ and Surgeline	
Č			outer open n 201	PRZ discharge		
				Natural circulation occurrence	RCS (Core, RPV, U-tubes, Leg	
	1			SG pressurization/depressurization		
	PSB-VVER			Mass inventory variation	SG SS	
				PS-SS heat exchange	SG SS and PS interface	
				PRZ pressurization/depressurization		
6		Test #05	MSLB and SGTR	Mass inventory variation	PRZ and Surgeline	
				PRZ discharge	-	
				PS mass distribution and depressurization	Reactor Coolant System	
				Natural circulation occurrence	RCS (Core, RPV, U-tubes, Leg	
		T 1 05	End of blowdown and	PS mass distribution and depressurization	Reactor Coolant System	
7	UPTF	Test 05 run63	refill phases following a	Core related phenomena (refilling,	Core	
		runos	LOCA with CL break	flooding, quenching,)	Core	
				Core heat exchange related phenomena	Core and fuel rods	
•	LOFT	12-5	2A CL LOCA	PS mass distribution and depressurization	Reactor Coolant System	
ø	LOFT	LZ-3	ZA UL LUCA	Core related phenomena (refilling,	Core	
	l			flooding, quenching,)	Core	
				PS-SS heat exchange	SG SS and PS interface	
				Core heat exchange related phenomena	Core	
9	SPES	SB-04	200 cm ² CL LOCA	PS mass distribution and depressurization		
9	SPES	SB-04	200 cm ² CL LOCA	Core related phenomena (refilling,		
				flooding, quenching,)	Core	
			1	Natural circulation occurrence	RCS (Core, RPV, U-tubes, Leg	


18/30

Qualification of the R5-3D EM

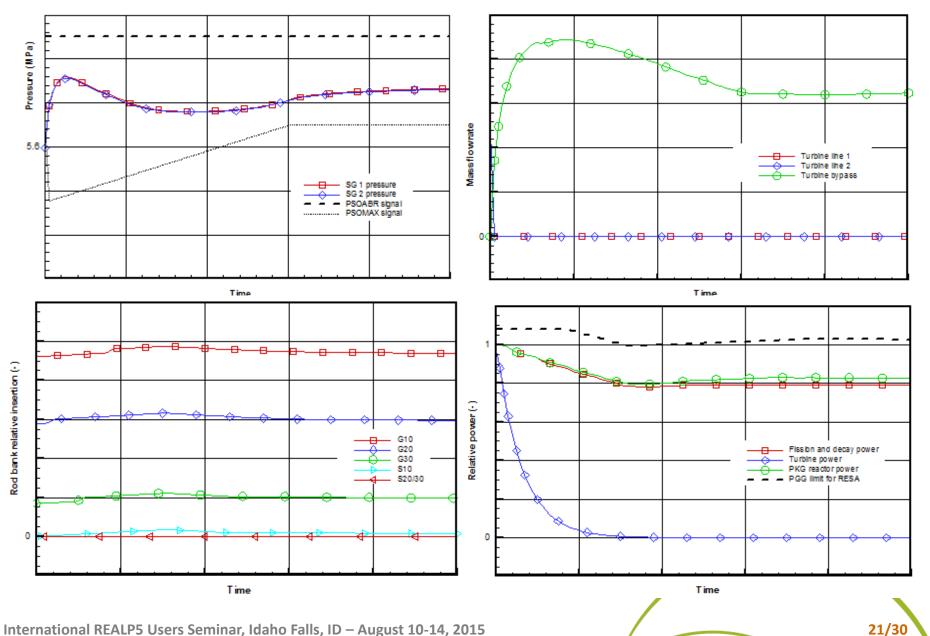
19/30

• LOBI MOD2 Test A1.83 – Atucha-II Kv Scaled Calculation

AOO: Turbine Trip Scenario

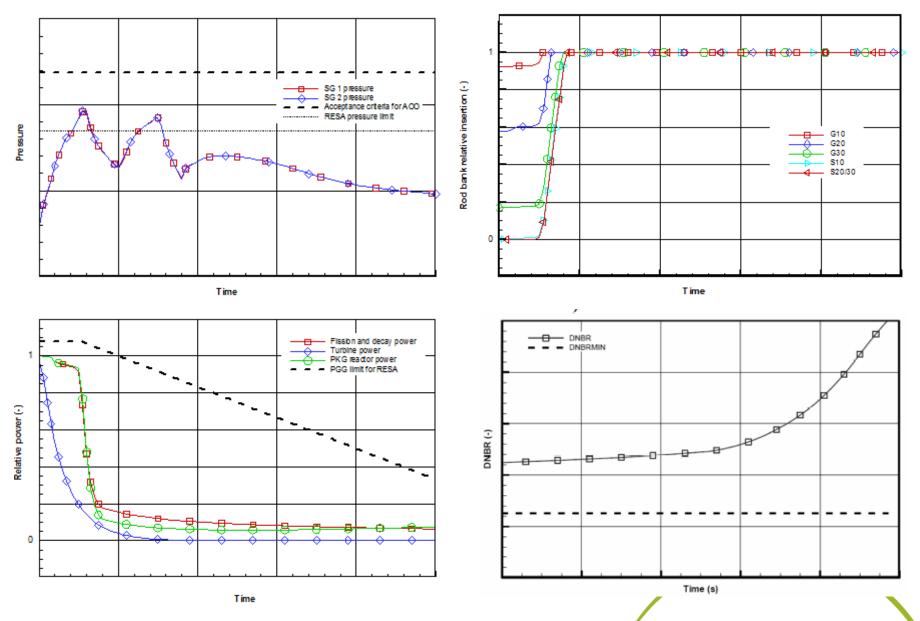
20/30

- The Turbine Trip Closure of Stop Valve Scenario (AOO, CSA, FSAR Ch. 15.2.3)
 - o 60 channels Relap5/3D © nodalization coupled with I&C-AT2 Dynetz nodalization


• Acceptance criteria

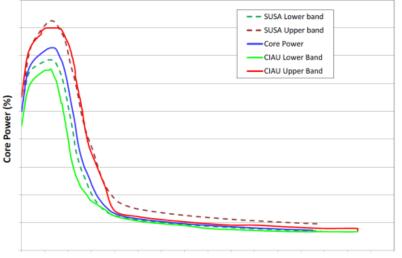
- No fuel melting is acceptable
- No departure from nucleate boiling can occur in the fuel channels or cladding
- temperature can not stay above 600°C longer than 120 seconds
- RCS pressure shall stay below 110% of design pressure (pressurizer safety valves can not be challenged)
- Secondary side pressure shall stay below 110% of design pressure

Reactor Statu	IS	Case A and Case B
Power		100%
Moderator tank average tempe	erature	Nominal (170°C)
Core condition		Equilibrium (BEQ)
I&C Status	Case A	Case B
Single Failure		Not Relevant
Repair Case		Not Relevant
Emergency Power Mode	all systems in	No
Consequential Failure	working order	No
Control System Failure		MS max pressure control
Limitation System Failure		No
Reactor Trip	First signal	First signal if it does not occur in Case A and second signal if occurs in Case A
Operator action demanded -		No, until plant is stabilized in a safe condition

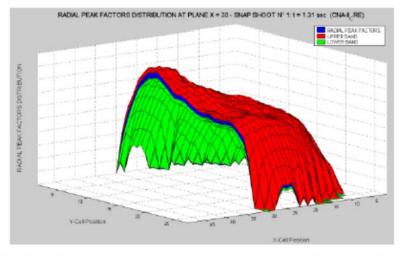


Turbine Trip - Case A

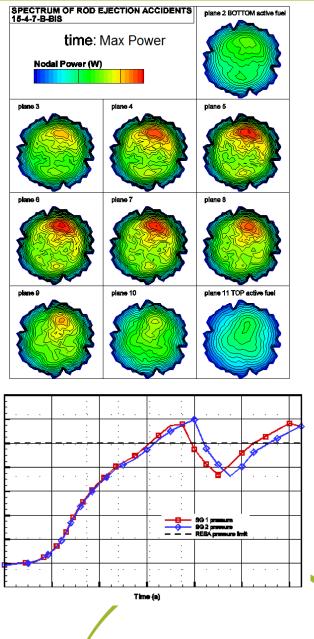
Turbine Trip - Case B



- The Control Rod Ejection Scenario (DBA, CSA, FSAR Ch. 15.4.7)
 - 280 channels Relap5/3D © nodalization coupled NESTLE
 - Case A: turbine bypass system behavior from 60 channels/Dynetz coupled nodalization
 - Two different Uncertainty evaluation Approaches (CIAU-TN & GRS-SUSA)
- Acceptance criteria
 - Average fuel hot spot enthalpy should be less than 230 cal/g for irradiated fuel
 - Cladding Temperature < 1200 °C
 - RCS pressure shall stay below 120% of design pressure
 - Secondary side pressure shall stay below 120% of design pressure


Reactor State	IS	C	case A and Case B	
Power		100%		
Moderator tank average ten	nperature		Nominal (170°C)	
Core condition			Equilibrium (BEQ)	
I&C Status	Case	e A	Case B	
Single Failure	Not rel	evant	Two way valve of KBA-40 spraying	
Repair Case	Not rel	evant	One KBA-80 Pump	
Emergency Power Mode	No	2	Yes	
Consequential Failure	No	2	Stuck rod No 6	
Control System Failure	No)	No	
Limitation System Failure	No		No	
Reactor Trip	No failure of the first signal		Failure of the first signal	
Operator action demanded	No, unt	til plant is stab	lized in a safe condition	

Control Rod Ejection - Case B

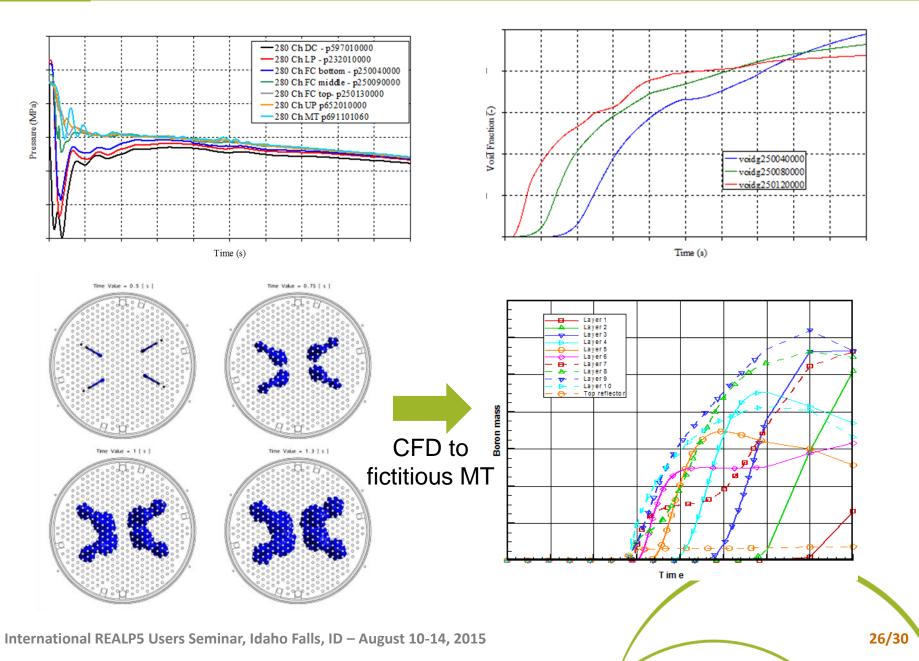


Time (s)

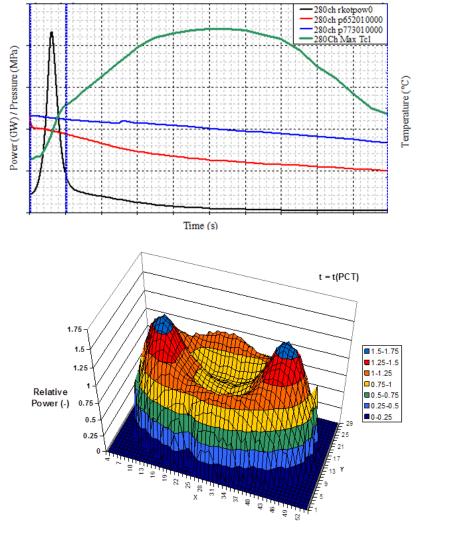
d) Radial peaking factors at power peak instant (half surface).

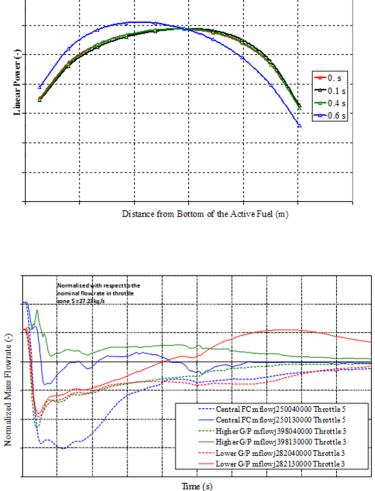
International REALP5 Users Seminar, Idaho Falls, ID – August 10-14, 2015

24/30

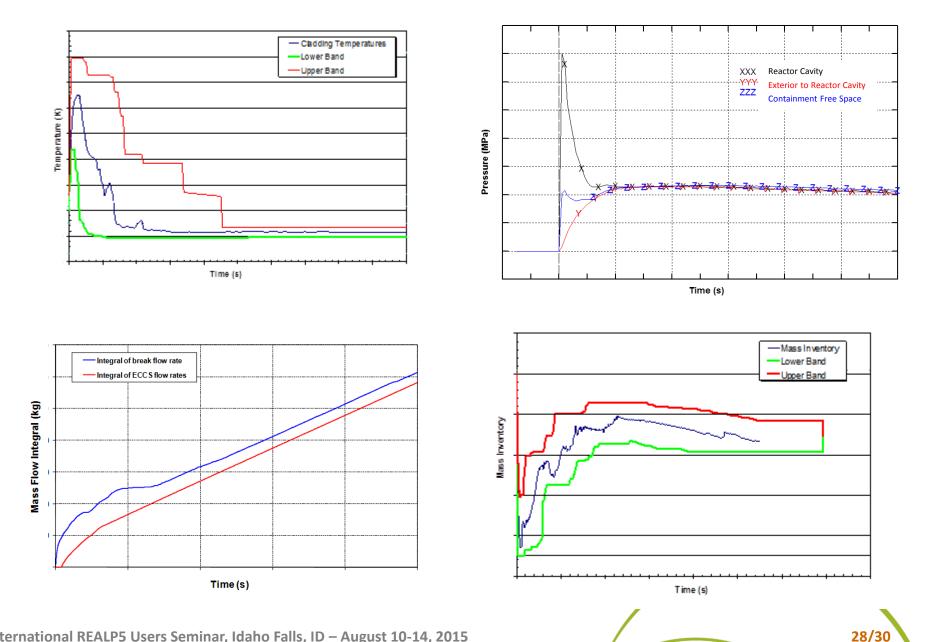


- The Double Ended Guillotine Break LOCA (2A-LOCA) in Cold Leg (SBDBA, CSA/RCA/CBA, FSAR Ch. 15.6.5.2.3.1)
 - Different break sizes (0.1A-2A), location and opening time investigated
 - Main objective: TPP, PCT, PCP, JND and JDJ performance
- Main computational tools (EM/CSA)
 - 280-ch (and 451-10nk): first few seconds of the transient with the highest detail allowed by the computational tools. Reactor power \rightarrow 60-ch nodalization
 - 60-ch\ I&C-AT2 Dynetz: transient evolution and system performances
 - Moderator tank and Boron Lances: boron diffusion (Ansys-CFX)
 - Containment: RELAP (and Melcor) nodalization



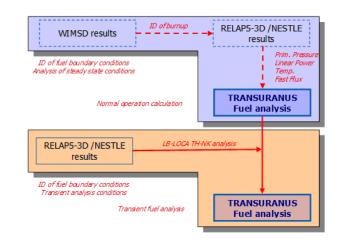

2A-LOCA in Cold Leg

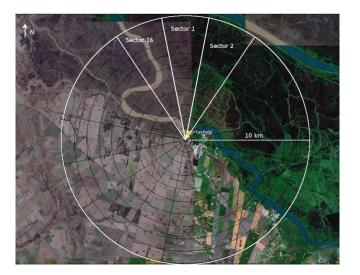
2A-LOCA in Cold Leg

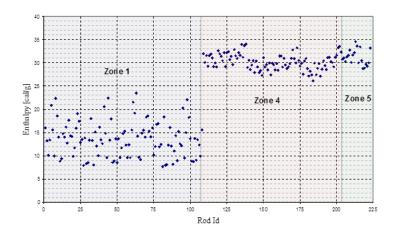


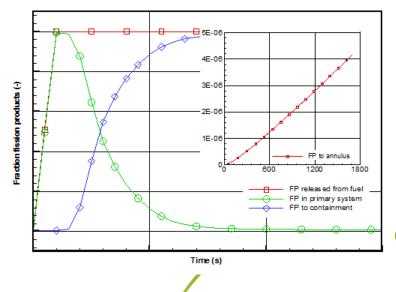
International REALP5 Users Seminar, Idaho Falls, ID – August 10-14, 2015

27/30




2A-LOCA in Cold Leg





EM/CBA → TRANSURANUS (451 calculations), BIC from 280\451 channels calculations
 EM/RCA → MCNP-Origen, 60chan(transport of FP), CONT-R, MACCS2

- BEPU approach for the Chapter 15 of FSAR presented Atucha-II PHWR
- To adopt and to prove (to the regulatory authority) an adequate quality for the computational tools
 - Selection of PIE
 - Several computer codes and nodalization (including I&C, 3DNK, CFD)
 - Coupling and interconnection among the codes
 - Specific issues coming from the specific design of Atucha-II
 - Qualification process (SCCRED)
- To account for the uncertainty
 - CIAU and CIAU-TN
- Seven years of activity involving more than 30 scientists and recognized international experts
 - Atucha-II licensed by ARN on May 29, 2014
 - First criticality on June 3, 2014

