Idaho National Laboratory

TWERL for TREAT Pre-conceptual design questions

Aaron Epiney

International Relap5 User Group Meeting (IRUG) Idaho Falls, April 18-19, 2019

TREAT - Overview

- Transient Reactor Test (TREAT) has resumed operations in order to support fuel safety testing and other transient science
- TREAT: Zircaloy-clad graphite/fuel blocks comprise core, cooled by air blowers
 - 120 kW steady state, ~20 GW peak in pulse mode
 - Virtually any power history possible within 2500 MJ max core transient energy
 - No reactor pressure vessel/containment, facilitates access for in-core instrumentation

Experiment design

- Reactor provides neutrons, experiment vehicle does the rest
- Tests displace a few driver fuel assemblies, handled in cask outside core
- Recoverable historic designs don't include water-environment vehicles, new designs needed
- 4 slots view core center
 - 2 in use for fast neutron hodoscope, neutron radiography
- Collocated at INL with other complimentary facilities
 - ATR and HFEF
 - Fuel fab and characterization

TWERL - Overview

- TREAT Water-Environment Recirculating Loop (TWERL), pump-forced convection ultimately needed to simulate:
 - LWR steady temperature distribution prior to accident trigger
 - Flow/temperature distribution in small bundles (TREAT is neutronically capable of driving high burnup 9-rod bundle to failure limits)
 - Post failure fluid-assisted behavior (fuel sweep out)
 - Timing of thermal hydraulic events (dry-out duration, life after DNB)
- Current efforts focused around thermal hydraulic performance comparison
 - System codes simulation of loop options and typical LWRs
 - Benchmarking against prototype loop recently built at OSU
- Building heavily upon Super-SERTTA design for 2022-2023 deployment

TWERL – Pre-conceptual design

- Currently in its pre-design phase
- ?? Question ??
 - "self-contained" loop: whole assembly including pump, heat exchanger and other components fits in the experiment opening in the TREAT reactor
 - "loop system concept": only the test section is inserted in the TREAT core while the other components (HX, pump, pressurizer, etc.) are located outside
- ⇒ Depends on pump (and heat exchanger (HX)) size!
- Need to know flow losses in the loop sufficiently to be able to size the pump appropriately.

RELAP5 Model

- RELAP5 hydraulics only model set up
 - Test Section: Five different test sections have been modeled and compared.
 - Heat exchanger: Three different options for the heat exchanger have been explored.
 - Pump: Time Dependent Junction, imposing fluid velocity.
 - Pressurizer: Time Dependent Volume, constant pressure of 155 bar is imposed.

Parametric studies

• Bundle geometries (How does the needed pump size vary with the number of rods in the test section)

# of pins	1	3	4	5	9
Flow area [cm ²]	1.058	3.175	4.399	5.159	9.589
Flow area/pin [cm ²]	1.058	1.058	1.100	1.032	1.065
D _h [cm]	0.550	0.550	0.809	0.698	0.918

Parametric studies

- Heat exchanger design
 - (How does the needed heat exchanger size vary with the number of rods in the test section and affect the pressure drop)
 - No heat exchanger
 - No heat exchanger or a heat exchanger that does not change the flow characteristics in the down-comer.
 - Simple tube and shell heat exchanger (for order of magnitude pressure drop estimation)
 - Simplified counter-current, staggered array, tube and shell heat exchangers have been dimensioned for the different test sections.
 - Log Mean Temperature Difference method (LMTD) has been used, invoking the Zukauskas correlation on the shell side and the Dittus-Boelter correlation on the tube side to evaluate the overall heat exchange coefficient.
 - Assuming maximum rodlet length (4ft) and maximum linear power (11kW/ft)

# of pins	1	3	4	5	9
Power to be					
evacuated [kW]	44	132	176	220	396
Flow rate [kg/s]					
(core ∆T=40K)	0.159	0.478	0.638	0.797	1.435
HX length [m]	0.343	0.348	0.358	0.373	0.403
HX flow area [m ²]	5.890E-04	1.021E-03	1.139E-03	1.217E-03	1.492E-03
HX D _h [m]	0.005	0.005	0.005	0.005	0.005
HV volume [m³]	1.644E-03	2.819E-03	3.225E-03	3.578E-03	4.711E-03

- More pressure drop (to assess sensitivity on HX pressure drop)
 - 1.5 times the simple heat exchanger

Parametric studies

- Coolant velocity and temperature
 - Design goals is to create prototypical PWR conditions inside the test section.
 - From legacy RELAP5 models steady state runs

Plant	Core inlet T [K]	Core outlet T [K]	Lower core velocity [m/s]	Upper core velocity [m/s]
4-loop Westinghouse	559	593	5.50	5.27
3-loop Westinghouse	560	593	4.57	4.91
4-loop Westinghouse	567	600	4.66	5.06

Parametric for TWERL

Test section fluid velocity: 4.9 and 5.3 [m/s].

Test section fluid temperature: 540, 560, 580 and 600 [K].

Wall roughness

Parametric for TWERL

Wall roughness: 1.52E-6 (drawn tubing), 1.5E-5 and 4.6E-5 (commercial steel) [m].

RAVEN

- RAVEN
 - Parametric and probabilistic analysis
 - Workflow manager
 - Input sampling
 - Running Model/Surrogate
 - Output post-processing
 - Coupled to RELAP5-3D
- Two layer "RAVEN running RAVEN" workflow for TWERL analysis

Results

Steady state, isothermal calculations, no HX

Results

Steady state, isothermal calculations, Simple HX

Results

Steady state, isothermal calculations, More HX

Pump design

Conclusions and Future Work

- Compact pump might be able to drive multi-pin bundles
- Need more detailed information on loop geometry
 - ⇒ **Heat exchanger** and **instrumentation** contributing most to the flow losses (after the test section)
 - ⇒ High pressure and temperature limiting for pump design (seal and motor coupling)
 - ⇒ Strat conversation with pump manufacturer for special design pump

- We are comparing TWERL RELAP5 results to representative PWR transient behavior using a statistical method measuring the "representativity" of the experiment.
 - Watch out for a presentation at NURETH 2019.

