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Need for Research

* During loss of flow in a high-temperature gas-
cooled reactor, coolant will slow and reverse
(up channel instead of down)

 This high heat flux, low flow condition is ripe
for laminarization

« Many potential downstream effects
(plume/jet into upper plenum, higher graphite
temps, etc)

* Not currently modeled in widely used
programs
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Need for Research

* A reliable method to predict and simulate
laminarization heat transfer effects needed

» Also needs to predict heat transfer in the
entrance region
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Nomenclature

* Re = Reynolds Number

« Kv = Acceleration Factor

 Bo* = Buoyancy Factor

* Nu = Convection/conduction heat transfer

« ADTHT = Acceleration-induced Deteriorated
Turbulent Heat Transfer

« BDTHT = Buoyancy-induced Deteriorated
Turbulent Heat Transfer
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Nomenclature

» R-squared = a statistical measure of
goodness of fit

R —1— Sum Squared Regression (SSR) _ .  X(yi—¥)?
squared — Total Sum of Squares (SST) Xi—yi)?




Idaho State
University

Prismatic Reactors
« Comprised of graphite hexagonal prisms with
many flow channels
* Most designs stack several blocks vertically
* Fueled ring with inner and outer reflector
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RELAPS5-3D Background

* Reactor Excursion & Leak Analysis Program 5

« Descended from FLASH-1 and later RELAPSE-
1

* In 1979, the first line of RELAP5 was written
* Inthe 1990's RELAP5-3D was developed

 Current version (also version used by this
project: RELAP5-3D Ver 4.5.2)
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RELAPS5-3D Background

« Most widely used reactor leak analysis
program

« Many variations (ATHENA, SCDAP, BETTIS
version)

« Also many non-nuclear uses

* Great candidate for modification to include
laminarization effects (demand for non-water
reactor use, but not designed with that in
mind)
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Laminarization

 Describes flow with characteristics of laminar
flow at Re where turbulent flow is expected

 (Causes traditional heat transfer correlations
to overpredict

« Can be caused by acceleration or buoyancy
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Entrance Effects

* Flow transitioning from one volume into a
pipe will have flow profile distortions

« Vena contracta describes relative narrowing
of bulk flow

« Narrowing is surrounded by eddies

« This increased mixing in the entrance region
improves heat transfer
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Vena Contracta

Eddy flows

FIGURE 3-1. Flow at the inlet to a straight pipe from
an unlimited space.
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Entrance Effects

* Flow perturbations likely pronounced in
prismatic reactors

« Uneven change in dimensions in graphite
over core life can create necking or
misalignment

« Each block acts as new entrance vs straight
pipe



Idaho State
University

PIV performed by ISU
(offset bevel at Re = 4,000
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Selection of Data

« Several laminarization experiments exist
« Kawaji (CUNY) has several great experiments

« Lee (MIT, overseen by Kazimi) had the best
quantitative data

» Other research was reviewed, but Lee's data
is what was used for correlation development
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Selection of Data

« |Lee's data involves a once-through, heated
graphite channel using various heat and
pressure inputs with CO2, N2, and He

« Lee's runs can be sorted into five categories:
Laminar
* Transition
« ADTHT
« BDTHT
e Turbulent
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Current R5 Correlations

« Using methods from R5 source code,
predicted Nu was calculated

* Done using correlation sets that can be user-
selected in R5

« The Jackson-Wu correlation set (selectable
as Geometry 164) was the overall best
starting point
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Current R5 Correlations

« Lack of entrance effects in R5 biggest source
of error compared to experiments

« Secondary to lack of modeling for
laminarization effects
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Current R5 Correlations

« Laminar heat transfer could also be improved

« R5 typically uses Sellars-Tribus-Klein (i.e.
Nu=4.36) for laminar

« Better correlations exist
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Correlation Development

* A three-pronged approach was taken

* One set of correlations, accounted only for
entrance effects and more refined laminar
flow predictions

« This “standard” set uses correlations
developed by well-known researchers (Travis
and El-Genk, and Jackson)

* Did nothing to improve modeling of
laminarization
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Correlation Development

A second set would further refine a
correlation for entrance effects

e Also would account for acceleration and
buoyancy induced laminarization

« Named the “Deluxe” set

 Uses the Lee data to refine/create
correlations

« Very complicated, multi-step process
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Correlation Development

- Finally, a third correlation set was developed
and implemented

« Took many of the positive aspects of the
Deluxe model, but attempted to minimize
required changes to RS

« This third set was known as the “Simplified
model”
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Correlation Development
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Adding Correlations to R5

* For each new correlation set, all changes
were made to dittus.F

 dittus.F is the primary single phase heat
transfer subroutine in R5

* Further changes to R5 could be made to
improve code flow and speed, however the
goal with this project was proof of concept
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Testing New Correlations

« Before testing in R5, “bootstrapping” was
applied to correlations

 Random resamples help eliminate systematic
error

e QGreat results from correlations
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Bootstrapping
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Bootstrapping

Deluxe
Types MIT1 MIT2 MIT3
Model
All

0.9826 0.8727 0.9211 0.8880

Laminar 0.9540 0.6151 0.6151 0.6151

Transition 0.9807 0.6479 0.6966 0.6918

BDTHT 0.9711 0.6681 0.7946 0.7533

ADTHT 0.9566 0.6146 0.7164 0.6513

Turbulent 0.9808 0.8966 0.9377 0.8984
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Deluxe Model All Flow Sub-Regimes
T T T T

180 | |

160 Close to a normal

distribution, indicates
lack of systemic .
error
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0.974 0.976 0.978 0.98 0.982 0.984 0.986 0.988
R-Squared Value
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Testing New Correlations

* One Lee Run from each flow sub-regime was
selected

« A model was created in R5 for each,
simulating the input conditions for each run

« Additionally, to test the effect when end-of-life
fuel cell distortion is present, five additional
models were made
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Time Dependent Volume
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heat structure

Time Dependent Junction
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< Time Dependent Volume
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Testing New Correlations

« Every simulation demonstrated

underprediction by Baseline RELAP5-3D in
entrance region

 All models do much better than Baseline

» Deluxe and Simplified models show good
prediction of laminarization heat transfer
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Lee Run #56 - BDTHT
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[T 111

- Same basic makeup as Lee
simulations

-10% Reduction in cross-sectional flow
area at junctions

- Abrupt loss form used

- Each section is 25 L/D (125 L/D total)
- Five pipes and 5 heat structures
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Distorted Channel - Transition

%0 Acceleration
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Distorted Channel - Turbulent
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Recommendations

* |nsert Standard Model as a user-selected
option

 Evaluate adding portion or all of Deluxe or
Simplified models as a developer option

« Buoyancy Correction Factor ready to be
implemented

 Likely need more data for Acceleration
Correction Factor
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Future Work

« RELAPS-3D
» Optimize changes to R5 code

* Experimental
 More ADTHT/laminar data needed
» Better exit data to improve Exit Correction Factor
« “Distorted” channel experiments
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Questions/Comments?
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