

Nuclear and INdustrial Engineering

SCCRED: a Supporting Tool for V&V and Uncertainty Evaluation of Best-Estimate System Codes for Licensing Applications

A. Petruzzi (UNIPI-NINE), F. D'Auria (UNIPI)

Presented by M.Lanfredini (UNIPI-NINE)

- Introduction and objective
- Computational tools for best estimate safety analysis
- The SCCRED methodology
 - Reference Data Sets
 - Qualification Report
 - Engineeting Handbook
- SCCRED: a supporting tool for V&V of BEPU methodologies
 - UMAE and CIAU methodologies
- Conclusions

- Availability of Experimental Data might not be enough:
 - Information spread on several reports
 - Different quality level and format of the documentation
 - Need to explain and clarify the information
 - Contradictions exist
- Preserving the Experimental Data shall be a MUST
- Qualified experimental database is envisaged by IAEA (SRS 23)
- Need for a <u>STANDARD</u> for fully exploit the experimental data and generate a <u>CONSOLIDATED Calculated and Reference Experimental</u> <u>Database (SCCRED)</u>
- Use of SCCRED for V&V of:
 - Computational tools
 - Uncertainty Evaluation

The SCCRED methodology

• SCCRED bases:

Achievements

- Development of a methodology for collecting, organizing, using and preserving an exhaustive set of geometrical data and experimental results
 - Exhaustive consolidated information is a standardized format
 - Traceability
 - Documentation of the decisions taken in case of lack of data or in presence of contradictory information
 - Creation of databases (experimental data & associated calculations) for BE code assessment and validation of UM
- Development of **Reference Data Set** documents for developing input decks
- Setting up standard procedures for using the collected data and qualify the code calculations (Qualification Report)
- Development of a standard report (**Engineering Handbook**) containing a full description of how the database has been converted into an input data deck for a specific computer code (support to verification)

- Consistent, consolidated and standardized set of relevant data of the facility and the tests
 - Check the quality of the data
 - Resolve possible contradiction review
 - \checkmark dispersed and not exhaustive information
 - ✓ Duration of experimental campaign
 - Explain information on geometry and TH properties
 - Perform and independent review
 - Application of quality assurance procedures
- The RDS are Code-independent → suitable for input development and qualification and for UM development and validation
- Two different types of RDS
 - RDS-Facility: one RDS for each facility in a "reference status"
 - RDS-test: one for each experiment performed in the facility

- The RDS-Facility is related with the design in a **"reference status"** of a facility and consists of the following **standard** sections
 - Layout of the facility
 - Collection of geometrical data (length, volumes, areas, elevations) for each subsystem and component of the facility
 - Collection of specific data for complex component (pumps, valves, heaters, etc...)
 - Identification of geometrical discontinuities and evaluation of pressure loss coefficients (normal operation)
 - Material properties
 - Measurement system
 - Nominal heat losses
 - Nuclear data (if available)
- "Reference status" corresponds to a geometrical and hardware configuration of the facility at a certain time

- Subdivision in **code-independent** modules
- 100 Primary circuit: broken loop
- 200 Primary circuit: intact loop
- 300 Pressure vessel and upper head
- 400 Steam generator: part of the secondary circuit of the broken loop
- 500 Steam generator: part of the secondary circuit of the intact loop
- 600 Pressurizer and its piping
- 700 Accumulator of the intact loop and its piping
- 800 Accumulator of the broken loop and its piping

RDS-Facility sample

			Pressure vesse	1		
	Module number Module location Module description	Module number Description	307 Upper plenum part 2			Vertical parallelepiped
•	Geometrical	Parameters	Evaluation	Value		Remarks
	description	Outer rod bundle diameter	D _{bandle} =10.75 mm	1.075·10 ⁻²	m	Draw. 13
	1	Barrel inside diameter	D _{barrel} =198 mm	1.98.10.1	m	
214 213 •	Lengths	diameter	D _{out} =288 mm	2.88.10.1	m	Draw. 13
	Eorigino	Number of rod bundle Length	64 L=2015+328=2343 mm	2.343	m	Draw. 13 Draw. 13
306	A roop	Elevation change	2015 mm	2.015	m	
heated length	Volumes	Flow area	$S=S1-S2$ $S1=\pi D_{barrel}^{2}/4=\pi \cdot 198^{2}/4$ $=30790.7 \text{ mm}^{2}$ $S2=64\cdot\pi D_{bundle}^{2}/4=64\cdot\pi^{2}$ $=5808.8 \text{ mm}^{2}$ $S=24981.9 \text{ mm}^{2}$	2.4982.10.2	m²	Draw. 13
Flexible connection (ricket, 16 mm 2)	Pressure losses	Inside surface area	$\begin{array}{l} \label{eq:scalar} \mbox{Heat exchange with downcomer} \\ S_{cylinder} = 2\pi \cdot R \cdot H \\ SA = \pi D_{barrel} L = \pi \cdot 198 \cdot 2343 \\ = 1457428 \ mm^2 \end{array}$	1.457428	m²	Draw. 13
301	Connection to other modules	Outside surface area	$\begin{array}{l} \textbf{Outer surface of barrel} \\ (part of module 301) \\ S_{cylinder} = 2\pi \cdot R \cdot H \\ SA = \pi \cdot D_{out} \cdot L = \pi \cdot 288 \cdot 2343 \\ = 2119896 \ mm^2 \end{array}$	2.119896	m²	
		Volume	24981.9·2343=58532592 mm ³	5.8532592·10·2	m³	
302	→ -	Pressure loss coefficient	Expansion $307 \rightarrow 308$ $k_{forw}=0.5$ $k_{rev}=1$			Tab. 4.2

• Accurate description of the measurement system

- Pressure losses evaluation in the "reference status"
 - Modules number
 - o Geometrical configuration
 - Parameters values and adopted formulas
 - o K-loss coefficient
 - o References

N٥	Element of system	Parameters	Gi kg/s	t ℃	ν _i ·10 ⁻⁷ m ² /s	ρ kg/m ³	wi m/s	Re·10 ⁶	Evaluation	kloc	Remarks
306- 307	Expansion (forward)	$\frac{F_0}{F_2} = \frac{8115}{24982} = 0.325$	28	326	1.26	654	5.29	4.26	$k_{loc} = \left(1 - \frac{F_0}{F_2}\right)^2$	0.452	Ref. [2] Sec. 4-1 (p. 146, 158)
	Expansion (reverse) $\underbrace{w_{i}, f_{j}}_{} - \cdots - \underbrace{w_{i}, f_{i}}_{}$	$\frac{F_0}{F_1} = \frac{8115}{24982} = 0.325$	28	326	1.26	654	5.29	4.26	$k_{loc} = 0.5 \left(1 - \frac{F_0}{F_1}\right)^{\frac{3}{4}}$	0.371	Ref. [2] Sec. 4-9 (p. 151, 165)
307- 308	Outlet from upper plenum: constriction (forward)	$\frac{B}{D_r} = 0$ $\frac{\delta_1}{D_r} = 0$	0.4	294	1.26	740	0.6	0.16		0.5	Ref. [2] Sec. 3-1 (p. 122)
	Outlet from upper plenum: constriction (reverse)		0.4	294	1.26	740	0.6	0.16		1	Ref. [2] Sec. 11-1 p. 510

- The RDS-Test is related with the specific test performed in the facility and consists of the following **standard** sections
 - Test objective
 - Facility Description
 - ✓ Test configuration
 - ✓ Difference between facility "reference status" and test configuration
 - Test description
 - ✓ Boundary condition
 - \checkmark Initial condition
 - Thermal-hydraulic system behavior
 - Main events and major captured phenomena
 - Thermal-hydraulic parameter trends (more than 40 time trends)

PD Vs length

Sequence of Events

Events	Time (s)
Break valve starts to open, blowdown initiated	0
Primary system pressure equal 132 bar (core heating power and secondary system isolation and cooldown trip signals enabled)	1.8
Feedwater valves and steam valve at condenser inlet start to close Cooldown of secondary system initiated	2.0
Saturation in hot legs	2.5
Break valve fully open Core heating power decay starts	3.0
Feedwater valves and steam valve condenser inlet fully closed	3.5
Primary system pressure equal 117 bar (HPIS trip signal enabled)	5.4
Primary system pressure equal 110 bar (MCPs trip signal enabled)	6.7
Main coolant pumps coastdown initiated	8.0
Saturation in cold legs	15.8
PRZ surge line uncovers	21.0
Saturation in lower plenum	31.0
HPIS water injection initiated	41.0

Relevant ICs

Parameters	Location	Value							
Primary System:									
Mass Flow	Intact loop Broken loop	20.8 kg/s 6.7 kg/s							
Pressure	Upper plenum	15.8 MPa							
Fluid Temperature	Vessel outlet • Intact loop • Broken loop Vessel inlet • Intact loop • Broken loop	327.9 °C 327.8 °C 296.2 °C							
Water Level	Pressurizer	c. 5.2 m							
Temperature	Pressurizer	346 °C							
Power	Core	5.20 MW							
Water Volume	Accumulator • Intact loop • Broken loop	246 l 76 l							
Gas Volume	Accumulator • Intact loop • Broken loop	34 18							
Temperature	Accumulator • Intact loop • Broken loop	c. 30 °C c. 30 °C							
Mass Flow	MCP seal water injection Intact loop Broken loop	0.01 kg/s 0.0087 kg/s							
Temperature	MCP seal water injection	c. 30 °C							
Water Temperature	HPIS	28 °C							
	Secondary System:								
Mass Flow	Steam generator Intact loop Broken loop	2.0 kg/s 0.66 kg/s							
Pressure	Steam dome Intact Loop Broken Loop	6.62 MPa 6.62 MPa							

14/34

Feedwater volumetric flow (short time)

Accumulators volumetric flows

Core power (short time)

- Nodalization preparation: main choices of the model characteristics and preliminary code resources distribution (data from RDS)
- Nodalization schematization according to the pre-set nodalization strategies
- Writing input following a pre-set structure
 - Specific care on avoiding typing error

 The Qualification Report (QR) collects the results of the qualification procedures of the code input and it is reviewed by the higher level analyst in the group

Geometrical Fidelity

	QUANTITY	ACCEPTABLE ERROR (°)
1	Primary circuit volume	1 %
2	Secondary circuit volume	2 %
3	Non-active structures heat transfer area (overall)	10 %
4	Active structures heat transfer area (overall)	0.1 %
5	Non-active structures heat transfer volume (overall)	14 %
6	Active structures heat transfer volume (overall)	0.2 %
7	Volume vs. height curve (i.e. "local" primary and secondary circuit volume)	10 %
8	Component relative elevation	0.01 m
9	Axial and radial power distribution (^{°°})	1 %
10	Flow area of components like valves, pumps orifices	1 %
11	Generic flow area	10 %

Acceptable errors -Geometrical Values-

17/34

Steady State Achievement

	OUANTITY	ACCEPTABLE ERROR (°)
12	Primary circuit power balance	2 %
13	Secondary circuit power balance	2 %
14	Absolute pressure (PRZ, SG, ACC)	0.1 %
15	Fluid temperature	0.5 % (**)
16	Rod surface temperature	10 K
17	Pump velocity	1 %
18	Heat losses	10 %
19	Local pressure drops	10 % (^)
20	Mass inventory in primary circuit	2 % (^^)
21	Mass inventory in secondary circuit	5 % (^^)
22	Flow rates (primary and secondary circuit)	2 %
23	Bypass mass flow rates	10 %
24	Pressurizer level (collapsed)	0.05 m
25	Secondary side or downcomer level	0.1 m(^^)

Acceptable errors – TH quantities

Example of "pressure drop vs length" curve

Inherent drift criterion check

Qualitative Evaluation

- Use of CSNI phenomena
 - To evaluate the facility design, the experimental quality and the calculation performance
- Visual observation
 - $\circ~$ Comparison between experimental and calculated time trends.
- Resulting time sequence of events
 - Calculated significant events and the timing of the events are compared with the experimental events
- Phenomenological Windows (Ph.W.)
 - PH.Ws should be distinguished
- Relevant Thermal-hydraulic Aspects (RTAs)
 - Inside each Ph.W., RTAs must be identified and characterized by numerical values of significant parameters

Quantitative Evaluation

21/34

Geometrical fidelity and Steady-State achievement

	N	QUANTITY	UNIT	EDBOD	EXP	DATA		EKK.		
				ERROR	Yr	ERROR	DATA			
	1	Primary circuit volume	m ³	1%	7.81	0.00	7.750	0.77%		
lent	2	Secondary circuit volume		2%	6.65	0.00	6.624	0.39%		
(A) Nodalization Developm	3	Non Active structures heat transfer area (overall)		10%	NA	NA		-		
	4	Core heat structure transfer surface area	m ²	m²	m ²		73.259	0.02	73.250	0.00%
	5	SG U-tubes heat structure external surface area (without tube sheet)		0.10%	335	2.00	336.944	0.00%		
	6	Maximum of the axial power distribution for the average rod in average channel (zone2)	KW/m	1.0%	26.95	2.05	25.165	0.00%		
	7	Maximum of the axial power distribution for the hot rod in hot channel (zone4)		2.0%	40.10	3.05	40.689	0.00%		

"Volume vs Elevation" curve

Geometrical fidelity check

POSITION ALONG THE LOOP		R5 COMP.	R5 [MPa]	EXP [MPa]
Hot leg inlet	HL IN	100010000	14.928	14.940
Hot leg outlet	HL OUT	107030000	14.922	14.937
Steam generator inlet plenum	SG IN	110010000	14.922	Na
U-tube top	UT TOP	112070000	14.901	Na
Steam generator outlet plenum	SG OUT	114010000	14.913	Na
Bottom of loop seal	LOOP SEAL	116050000	14.920	14.899
Pump inlet	PUMP IN	118(9)020000	14.917	NA
Pump outlet	PUMP OUT	124(5)020000	14.988	NA
Cold leg in	CL IN	126010000	14.973	14.972
Cold leg out	CL OUT	136010000	14.967	14.966
Lower plenum (0.15m from vessel bottom)	LP	220010000	15.002	NA
Core inlet	CORE IN	232010000	14.980	NA
Core outlet	CORE OUT	245010000	14.967	NA

Pressure drops distribution

Geometrical fidelity and Steady-State achievement

Inherent drift criterion check

SS values achievement check

	Nº	° QUANTITY		ACCEPT	EXP	DATA	CALC	ERR.
				ERROR	Y,	ERROR	DATA	
	1	Primary circuit power balance	MW		36.00	1.20	36.00	0.00%
	2	Secondary circuit power balance	1	2.0%	NA	NA		
	3	Primary system hot leg pressure			14.94	0.10	14.928	0.00%
	4	PRZ pressure	MPa		14.95	0.10	14.911	0.00%
	5	SG exit pressure	nra i	0.10%	5.85	0.06	5.838	0.00%
	6	Accumulator A pressure	1		4.29	0.06	4.290	0.00%
	7	Intact loop HL temperature (near vessel)			589.50	4.20	592.00	0.00%
tate	8	Intact loop CL temperature (near vessel)	1	К 0.50%	556.40	4.30	557.10	0.00%
teady S	9	Reactor vessel downcomer temperature	к		555.00	4.00	557.50	0.00%
	10	Broken loop HL temperature (near vessel)			561.90	4.30	561.50	0.00%
ats	11	Broken loop CL temperature (near vessel)			554.30	4.20	557.00	0.00%
tion	12	Intact loop pressurizer temperature	1		615.60	0.70	614.90	0.00%
ifica	13	Pump velocity	rpm	1.0%	1250.00	70.00	1262.70	0.00%
laup	14	Heat losses	-	NA	NA	NA		
ion	15	RPV pressure loss			26.00	1.90	28.00	0.36%
lizat	16	Core pressure loss	1	10.0%	NA	NA		
oda	17	PS total loop pressure loss	1		75.00	20.30	52.00	4.94%
B) N	18	Total mass inventory in PS	Ko	2.0%	NA	NA	5900.0	-
č	20	Total mass inventory in SG	1 ~~	5.0%	NA	NA		
	21	PS total loop coolant mass flow			192.40	7.80	191.90	0.00%
	22	SG feedwater mass flow	Kole	2.0%	19.10	0.40	19.51	0.05%
	23	Core coolant mass flow rate	Ng/S		NA	NA		
	24	Core bypass mass flow (LP-UP)	1	10%	NA	19.5		
	25	Pressurizer level (collapsed level)		0.05	1.14	0.03	1.14	0.0000
	26	Secondary side or downcomer level	1	0.1	NA	NA		

Qualitative Evaluation

Intact HL pressure

Break mass flow rate

PCT

EVENT	Time (s)				
EVENI	EXP	ERR	CALC		
Experiment L2-5 initiated	0.0	-	0.0		
Subcooled blowdown ended	0.043	±0.01	0.032		
Reactor scrammed	0.24	±0.01	0.24		
Cladding temperature initially deviated from saturation	0.91	±0.2	0.3		
Primary coolant pumps tripped	0.94	±0.01	0.94		
Subcooled break flow ended (cold leg)	3.4	±0.5	0.1		
Partial rewet initiated	12.1	±1.0	8.2		
Pressurizer emptied	15.4	±1.0	15.3		
Accumulator A injection initiated	16.8	±0.1	15.1		
Partial rewet ended	22.7	±1.0	15.1		
HPIS injection initiated	23.9	±0.02	23.9		
Maximum cladding temperature reached	28.47	±0.02	5.2		
LPIS injection initiated	37.32	±0.02	37.32		
Accumulator emptied	49.6	±0.1	52.0		
Core cladding quenched	65.0	±2	65.5		
BST maximum pressure reached	72.5	±1.0	-		
LPIS injection terminated	107.1 ^{III}	±0.4	-		

Time sequence of events

International RELAP5 Users Seminar – Idaho Falls, ID – August 10-14, 2015

Qualitative Evaluation

RTA	RTA Parameter	UNIT	EXP	R5	Judg. R5
	RTA: Critic	al Flow			
	Time of maximum break mass flow rate	s	0.1	0.1	E
TSE	Time of two-phase flow at the break	s	0.043	0.032	R
SVP	Maximum break mass flow rate	ka/s	869	1073	R
	Integral break mass flow at:				
	 two-phase flow at the break occurrence 	ka	243	53	R
	 dryout occurrence 	ka	595	435	R
	 PRZ emptying time 	kg	3638	4719	R
	 ACC injection time 	kg	3790	4693	R
IPA	 minimum PS mass inventory occurrence 	kg	4003	5332	R
	 HPIS injection time 	kg	4114	5332	R
	- PCT time	kg	4238	2658	M
	 LPIS injection time 	kg	4408	5684	R
	 core quenching occurrence 	kg	4804	5927	R
	 end of calculation (t=100 s.) 	kg	5280	6134	R
	RTA: Pressurize	er behavi	or		-
TSE	Time of emptying	s	15.4	15.3	E
<u> </u>	Time of PRZ pressure equal to PS pressure	S	38.0	40.0	E
	PRZ pressure at:				
	 two-phase flow at the break occurrence 	MPa	14.77	14.87	E
	- dryout occurrence	MPa	14.55	14.4	E
	PRZ emptying time	MPa	8.85	7.78	R
SVP	- ACC injection time	MPa	7.17	7.96	к
	HPIS injection time	MPa	2.88	2.79	E
	- PCT time	MP-	1.62	12.8	M
	- LPIS Injection time	MP-	0.73	0.56	R R
	 core quenching occurrence 	rind	0.67	0.40	ĸ
	RTA: Primary Syst	em beha	viour	1	
TEE	Time of UP in saturation condition	s	0.18	0.2	E
TOE	Time of PS pressure equal to SS pressure	s	10.1	9.9	E
	PS pressure at:				
	 two-phase flow at the break occurrence 	MPa	10.15	10.2	E
	 dryout occurrence 	MPa	9.69	10.6	M ⁷³⁷
	 PS equal to SS pressure occurrence 	MPa	5.71	5.73	E
	 PRZ emptying time 	MPa	4.73	4.24	R
SVP	 ACC injection time 	MPa	4.25	4.3	E
	 minimum PS mass inventory occurrence 	MPa	2,56	1.77	R
	 HPIS injection time 	MPa	1.76	1.77	E
	- PCT time	MPa	0.91	7.2	M
	LPIS injection time	MPa	0.5	0.45	E
	 core quenching occurrence 	MPa	0.47	0.47	E
	RTA: Core powe	r behavio	our		
	Time of dryout	s	0.91	0.6	R
TSE	Time of peak cladding temperature (PCT)	s	28.47	5.2	R
	Time of core quenching	s	65.1	65.5	E
SVP	Peak cladding temperature	°C	1078	1114	E

RTA	RTA Parameter	UNIT	EXP	R5	Judg. R5
	RTA: Accumulate	or Behavi	our		
TOP	ACC injection time	s	16.8	15.1	R
ISE	Time of ACC emptied	s	49.6	52.0	E
SVP	ACC pressure at core quenching occurrence	MPa	0.98	0.63	R
	Integral ACC mass flow at:				
	 minimum PS mass inventory occurrence 	kg	123.9	312.0	R
IPA	- PCT time	kg	516.6	0.0	M
	 core quenching occurrence 	kg	1504	1570	E
	 end of calculation (t=100 s.) 	kg	1506	1584	E
	RTA: HPIS B	ehaviour			
TSE	HPIS injection time	s	23.9	23.7	-
	HPIS mass flow rate at:				
SVP	 core quenching occurrence 	kg/s	0.74	0.79	E
	 end of calculation (t=100 s.) 	kg/s	0.75	0.79	E
	Integral HPIS mass flow at:				
IPA	 core quenching occurrence 	kg	33.3	30.24	E
	 end of calculation (t=100 s.) 	kg	59.5	60.36	E
	RTA: LPIS Be	ehaviour			
TSE	LPIS injection time	s	37.32	37.1	-
	LPIS mass flow rate at:				
SVP	 core quenching occurrence 	kg/s	5.67	5.71	E
	 end of calculation (t=100 s.) 	kg/s	7.21	6.1	R
	Integral HPIS mass flow at:				
IPA	 core quenching occurrence 	kg	146.8	173.0	R
	 end of calculation (t=100 s.) 	kg	376.66	310.0	R
	RTA: Secondary Sy	stem beh	avior		
	SS pressure at:				
	 two-phase flow at the break occurrence 	MDa	5.84	5.84	F
	 dryout occurrence 	MPa	5.84	5.85	F
	ACC injection time	MPa	5.68	5.69	F
SVP	HPIS injection time	MPa	5.68	5.67	F
	- PCT time	MPa	5.69	5.81	R
	 LPIS injection time 	MPa	5.64	5.65	E
	 core quenching occurrence 	MPa	5.59	5.60	E
		Dutino	Curlan (*)		
TSE	Time of minimum PS mass inventory	<pre>rmary c</pre>	System (*)	23.7	F
1.56	Minimum DS mass inventory	ka	2020.9	979.6	
	PS mass inventory at:	Ng	202010	22010	<u> </u>
	 two-phase flow at the break occurrence 	ka	5656 3	5926.4	P
	 dryout occurrence 	ka	5326.5	5522.5	R
SVP	ACC injection time	ka	2143.3	1258.6	R
	HPIS injection time	ka	2056.1	928.6	R
	- PCT time	ka	2183.2	3294.4	M
	 LPIS injection time 	ka	2480.7	1200.0	R
	 core quenching occurrence 	ka	2780.4	1784.6	R

Quantitative Evaluation

	PARAMETER	AA	WF	
1 Intertier hetier nueruure 0.076 0.202				
1	Intact loop not leg pressure	0.076	0.203	
2	Pressurizer pressure	0.051	0.108	
3	Accumulator pressure	0.103	0.093	
4	Secondary side steam dome pressure	0.013	0.379	
5	Fluid temperature at fuel bundle bottom	0.039	0.269	
6	Fluid temperature at fluid bundle top	0.135	0.207	
7	Fluid temperature at core inlet	0.063	0.271	
8	Fluid temperature at core outlet	0.082	0.288	
9	Fluid temperature at BL CL nozzle	0.069	0.275	
10	Fluid temperature at HL IL nozzle	0.239	0.180	
11	Fluid temperature at SG IL in	0.122	0.192	
12	Fluid temperature at SG IL out	0.109	0.244	
13	Fluid Temperature at BL HL nozzle	0.256	0.179	
14	Pressurizer level	0.040	0.214	
15	Accumulator level	0.599	0.083	
16	Cladding temperature, zone 1, bottom	0.234	0.306	
17	Cladding temperature, zone 4, 2/3 level (PCT)	0.315	0.223	
18	Cladding temperature, zone 1, 2/3 level	0.635	0.217	
19	Cladding temperature, zone 2, top level	0.228	0.270	
20	Cladding temperature, zone 4, top level	0.297	0.205	
21	Mass flow at cold leg break	0.443	0.274	
22	Mass flow at hot leg break	0.702	0.232	
TOTAL		0.178	0.255	

25/34

Engineering Handbook

• EH contains the **technical rationale** for the input provides the **engineering justifications** of the adopted assumptions and allows the **verification** of the model's input file

- Methods and assumptions used to convert the RDS-Facility and RDS-Test information into the code input data
- Nodalization schemes of the components
- The calculation notes (traceability of the information)
- Adequate description and explanation of adopted modeling assumptions
- By the EH, information and knowledge of the input files can be transferred easier in time and to different groups
- Final step of the process to set up a **qualified database**, IAEA states that a: "documents contains a full description of how the database has been converted into an input data deck for a specific computer code", (IAEA, SRS n°23) should be available

Relap5-3D © nodalization description

• Cross link between (RDS) Drawings and Nodalization

Conversion from RDS data (code-independent) to input data (code-dependent)

5 LOGIC AND CONTROL SYSTEM			
5.1 Control Variables			
5.1.1 Level			
Table 5-1 summarized the level control variable that are present in the RELAP5 input. In the present <i>Table 5-1</i> , the control variable related to a particular part of the ITF are grouped together (the same approach has been used in the input file). For each control variable the location of the level measurement is identified (second column), the correspondence with the ITF measurement channel is given in the fifth column. For each control variable the last column of <i>Table 5-1</i> provide the reference to the section that the described the specific control variable.			
5.1.1.1 Pressurizer level			
The pressurizer level is calculated summing the liquid void fraction in each cells multiplied by the elevation change of each cell for which the variable "voidf" is calculated (<i>Equation 2-1</i> and <i>Equation 2-2</i>). Two control variable are used to calculated the actual collapsed level of the pressurizer: 4209 and 4309.			
Control variable 4209:			
$\label{eq:PRZ_L1} \textit{PRZ_L1} = 0.395 \cdot \textit{voidf} \ 420_01 + 0.395 \ \cdot \textit{voidf} \ 425_01 + \ 0.585 \ \cdot \ \textit{voidf} \ 430_01 \ + 0.585 \ \cdot \ \textit{voidf} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$			
+0.5 · voidf 430_02 + 0.5 · voidf 430_03 + 0.5 · voidf 430_04 + Equation 5-1			
$+ 0.5 \cdot voidf \ 430_05 \ + \ 0.345 \ \cdot voidf \ 430_06$			
Control variable 4309:			
$PRZ_{L} = 0.336 \cdot voidf 430_{0}7 + 0.5 \cdot voidf 430_{0}8 + 0.5 \cdot voidf 430_{0}9 + 0.5 \cdot v$			
$+ 0.6 \cdot voidf 430_{10} + 0.6 \cdot voidf 430_{11} + 0.705 \cdot voidf 430_{12} + Equation 5-2$			
$+ 0.705 \ voidf \ 440_01 \ + \ 1.0 \ \cdot \ cntrlvar \ 4209$			
5.1.1.1 Intact Loop Level			
Intact Loop Steam Generator Inlet Global Level (CNTRLVAR 1159)			
Control variable 1159 calculates the collapsed liquid level in the inlet pipe of the intact loop steam generator, it corresponds to measurement channel "CL90AB" +1.19 m – 0.055 m. The collapsed liquid level is calculated summing the liquid void fraction in each cells multiplied by the elevation change of each cell for which the variable " <i>voidf</i> " is calculated (<i>Equation 5-3</i>). The initial value for the variable is 2.9 m.			
Control variable 1159:			
$ILSGIN_L = 0.83 + 0.458 \cdot voidf \ 110_08 + 0.4 \cdot voidf \ 110_09 + $			
+ 0.4 · voidf 110_10 + 0.3 · voidf 110_11 + Equation 5-3			
$+ 0.2 \cdot voidf \ 110_{-}12 + \ 0.312 \cdot voidf \ 115_{-}01$			

2.2.1.2 Lower Plenum				
HYDRO COMPONENTS				
• Rationale				
• User choices				
 Models (flag) 				
BRANCH 310 (HEMISPHERICAL HEAD)				
Default				
<u>PIPE 315 (CORE INLET)</u>				
Default				
 Geometry Data 				
BRANCH 310 (HEMISPHERICAL HEAD)				
Component 310 models the bottom of the reactor pressure vessel, it consists of the cylindrical part and the hemispherical bottom. The internal diameter of the core vessel is 0.312 m, the internal radius of the hemispherical bottom is 0.373 m and the average flow area of the component is 7.0954 \cdot 10 ⁻² m ² (<i>Equation 2-7</i>). See <i>Table 2-2</i> for detailed geometry summary.				
$A_{310} = V_{M302} / L_{M302} = 0.026465 / 0.373 = 7.0954 \cdot 10^{-2} m^2$ Equation 2-4				
<u>PIPE 315 (CORE INLET)</u>				
Component 315 models the entrance region to the core barrel. It is subdivided in 3 cells, the total length is 1.006 m and the average flow area is $2.5651 \cdot 10^{-2}$ m ² (<i>Equation 2-5</i>). The component PIPE 315 corresponds to module 303. See <i>Table 2-2</i> for detailed geometry summary.				
$A_{315} = V_{M303} / L_{M303} = 0.025805 / 1.006 = 2.5651 \cdot 10^{-2} m^2$ Equation 2-5				

30/34

- Computational tools in BEPU analyses includes:
 - o BE Computer codes
 - \circ Nodalization
 - ✓ Procedure for development and qualification
 - Procedure to address the "code-user-effect"
 - Uncertainty methodology
 - Procedure for the validation of the methodology
 - ✓ Procedure to address the "uncertainty-method-user-effect"
 - Platform for coupling and interfacing different codes
- The SCCRED is applicable in the V&V of all the BEPU computational tools

Relevant experimental data 🛑 Qualified computational tool

A key feature of BEPU methodologies is to adopt a validated UM
 ○ Improvements and validation of the present UM are necessary
 ✓ UMS, BEMUSE → PREMIUM project focused on the "uncertainty-method-user-effect"

- Spread of uncertainty Bands for cladding temperature
 - Similar uncertainty methods (propagation of input uncertainty parameters) and in some cases the same thermal-hydraulic code

UMS (1995)

BEMUSE (2009)

Multiple Input

Selection of input uncertain parameters

n* 10²

ID of range & PDi per each n*

n~10⁵

- The Propagation of Code Input Errors
 - Need to Implement V&V Concepts to characterize:
 - ✓ Input Uncertainty Parameters
 - ✓ Ranges of variation of Input Uncertainty parameters
 - ✓ Probability Distribution Functions
- The Propagation of Code Output Errors
 V&V concepts are (inherently) part of the approach

Relevant experimental data \iff Qualified code calculation Accuracy Database \longrightarrow Uncertainty Database (applicable to qualified calculations)

Predictive Modeling Methodology

 V&V concepts are (inherently) part
 of the approach

Relevant experimental data 🛑 Qualfied computional tool

CODE

INPUT DECK

UNCERTAINTY

PROPAGATIO

Multiple Output

m ~ 10³ voical, uninfluent

Predicte

NPP transien

scenario

International RELAP5 Users Seminar – Idaho Falls, ID – August 10-14, 2015

- SCCRED methodology: needed to the V&V process of UM based on the "propagation of output errors"
- CIAU and CIAU-TN bases:
 - Use of systematic qualification process
 - The 'NPP status approach' to identify 'phase spaces' to which associate single uncertainty values for each of the selected output quantities
 - o The 'separation and recombination of time and quantity 'error'
 - o 'error filling process' and 'error extraction process'
 - ✓ accuracy database → uncertainty database for the uncertainty evaluation of the qualified NPP code calculation.

Relevant experimental data 🛑 Qualified code calculation

- Should be a mandatory requirement also for
 - predictive modeling methodology
 - \circ "propagation of input uncertainties" methods to validate the selection of
 - Input uncertainty parameters
 - Associated ranges of variations and the PDFs

Reduce the uncertainty-method-user effect

33/34

- Main outcomes deriving from the application of the SCCRED methodology:
 - **o** Demonstration of the code qualification level
 - Reduction of code-user-effect
 - ✓ Code user guidelines
 - User discipline & QA procedure in development of the nodalization, analysis of the results and documentation
 - Traceability of user choice and derivation of input data
 - **o** Database of experimental data and associated code calculations
 - o derivation and availability of an accuracy database
 - Demonstration of the qualification level of the accuracy database;
 - Reduction of the uncertainty-method-user effect
 - Application of the desired level of quality assurance when a BEPU approach is applied in licensing framework
 - Possibility to perform a V&V of BEPU applications(BE computational codes and associated uncertainty methodologies)

