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MYRRHA plant: purposes and general design 

l MYRRHA: Multi-purpose hYbrid Research Reactor for High-tech 
Applications 

l  Pool-type Accelerator Driven System (ADS) with ability to 
operate also as critical reactor 

l  Liquid Lead-Bismuth Eutectic (LBE) as primary coolant 
l Main purposes: 

l Flexible fast-spectrum irradiation facility 
l Minor Actinides (MAs) transmutation demonstrator 
l ADS demonstrator 
l GEN-IV European Technology Pilot Plant (ETPP) in the roadmap for 

Lead Fast Reactor (LFR) 
l MYRRHA project recognized as high priority infrastructure for 

nuclear research in Europe 
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MYRRHA plant: Primary Cooling System 

1.  Reactor vessel 
2.  Reactor cover 
3.  Diaphragm 
4.  4 Primary Heat 

Exchangers 
5.  2 Primary Pumps 
6.  In-Vessel Fuel 

Handling Machine 
7.  Core barrel 
8.  Above Core Structure 
9.  Core plug 
10.  Spallation window 

l MYRRHA primary system design current status: 
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l Completely enclosed in 
primary vessel (pool-type) 

l Design power: 110 MW 
l Primary LBE: 

l Lower plenum (270 °C) 
l Upper plenum (~325 °C) 

l Cold plenum separated 
from hot plenum by 
Diaphragm supporting 
core barrel and 
components’ penetrations 

l Above LBE free surface: 
Nitrogen layer 
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MYRRHA plant: Fuel Assembly  

l MOX fuel, 30% wt. Pu 
l  Fuel pin with wire 

spacer in 15-15Ti 
l  127 pins per Fuel 

Assembly 
l  External wrapper 
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MYRRHA plant: Sub-Critical Core Layout 

l  Sub-critical core: 
l 72 FAs 
l Maximum Power: 75 MW 
l Keff = 0.95 à improved safety 

characteristics 
l 6 Control Rods 
l 6 In-Pile Section positions 
l No safety rods required 
l High and hard flux in core center à 

MA transmutation 
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MYRRHA plant: Critical Core Layout 
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l  Critical core: 
l 108 FAs 
l Maximum Power: 100 MW 
l 6 Control Rods 
l 3 Safety Rods 
l 4 In-Pile Section positions 
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MYRRHA plant: Secondary and Tertiary Cooling System 

l MYRRHA secondary system (one loop out of four) conceptual 
diagram: 
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MYRRHA plant: Secondary and Tertiary Cooling System 

l  Secondary system: 
l Four independent secondary loops (linked through PHXs) 
l Operated with forced flow two-phase water mixture (16 bar, 200 °C) 
l Secondary water flow path: 

l PHX inlet (~saturated conditions) 
l PHX outlet (x ~ 0.3, α ~ 0.9) 
l Moisture separated in steam drum 

l In normal operation, secondary water temperature kept constant by 
control system (primary LBE temperature changing as a function of 
core loading) 

l  Tertiary system: dissipating heat to external environment through 
air condensers (forced circulation air fans) 

l  Condensed steam recirculated into steam drum 
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MYRRHA plant: Decay Heat Removal 
l  Accidental conditions 

à DHR in full natural 
circulation (primary, 
secondary and tertiary 
able to operate in 
passive mode) 

l  Two systems to 
remove decay heat 
power: 
l DHR-1: secondary 

and tertiary systems 
operating in passive 
mode 

l DHR-2: Reactor 
Vessel Auxiliary 
Cooling System 
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MYRRHA safety analysis: FP projects participation 
l  Participation to several European FP projects in last decade: 

l FP6 IP-EUROTRANS, leading to finalization of MYRRHA/XT-ADS 
version of MYRRHA in June 2008 

l FP7 Central Design Team (CDT), defining MYRRHA/FASTEF 
version in March 2012 

l FP7 MAXSIMA (started in November 2012, ongoing), more focused 
on the MYRRHA safety analyses and component qualification 

l  European FP projects outcome partly used to define the latest 
version of MYRRHA design (currently in verification phase) 

l  Current version not definitive 
l MYRRHA design still evolving taking into account results from 

parallel R&D program 
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MYRRHA safety analysis: RELAP5-3D model 

l  RELAP5-3D MYRRHA plant model: 
l 2518 volumes, 2590 junctions 
l All cooling systems (primary, secondary, tertiary) simulated 
l Main control systems (Control Rods, secondary pressure) included 

12 

Core Pumps + Primary 
Heat Exchangers 

Primary System 

Secondary + 
Tertiary Cooling 
System (x4) 
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MYRRHA safety analysis: Steady State 
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l  First step: steady state analysis 
l Main steady state results reported: 

l Very good agreement between code-calculated values and design 
values 
l Limited differences due to different LBE physical properties (mainly Cp) 

l Maximum clad temperature ~470 °C 
l Maximum fuel temperature ~1600 °C (low value due to low linear 

power ~110 W/cm) 

Parameter Unit RELAP5-3D	value Design	value 
Lower	plenum	temperature °C 270.1 270 
Upper	plenum	temperature °C 322.9 325 

Maximum	core	outlet	temperature °C 424.6 430.7 
Primary	flow	rate kg/s 13829 13800 
Core	flow	rate kg/s 7716 7711 

Secondary	water	pressure bar 16 16 
Secondary	water	PHX	inlet	temperature °C 198.2 200 
Secondary	water	PHX	outlet	quality - 0.30 0.3 
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MYRRHA safety analysis: SCS depressurization transient 
l  Unbalance between power delivered by PHXs and removed by 

aero-condensers à SCS depressurization (16 bar à 1 bar and 
below) 

l Overcooling transient: 
l 4 (out of 4) tertiary fans accidentally restarting at full speed with DH 

power level in the core 
l SCS depressurization 
l SCS feedwater pumps active 

l  Transient evaluation performed with RELAP5-3D and RELAP5/
Mod3.3 
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MYRRHA safety analysis: SCS depressurization transient 
l  Different transient evolution evaluation by the two codes: 

l Above 5 bar: ~same evaluation 
l Below 5 bar: 

l Nearly no differences in pressure evolution 
l Diverging liquid and vapor temperatures 

15 
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MYRRHA safety analysis: SCS depressurization transient 
l Minor edit "sattemp" and "tsatt" plotted (supposed to coincide if 

no non-condensable species present) for both codes: 

16 

l  Different trends for "sattemp" and 
"tsatt" 

l  "tsatt" provides same profile as vapor 
phase 

l  "sattemp“ lower than the liquid phase 

l  "sattemp" and "tsatt" profiles match 
l  "sattemp" and "tsatt" profiles ~equal to 

vapor phase 
l  Liquid phase lower than saturation 

temperature 
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MYRRHA safety analysis: SCS depressurization transient 
l  SCS temperature evolution important towards primary PbBi 

coolant freezing risk: 

17 

l  RELAP5-3D and RELAP5/Mod3.3 predicts LBE freezing time of 
~1600 s and ~800 s respectively. This difference can have a 
certain impact for the safety case. 
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Experimental validation at low pressures: Zeitoun and Choukri 

l  Preliminary review of available benchmarks: Zeitoun and Choukri 
experiment: 
l Void generation in heated channel 
l Sensitivity parameters: 

l Pressure (1.07 bar - 1.56 bar) 
l Heat flux and mass flow rate (q/m: 0.867 kJ/kg – 2.64 kJ/kg) 
l Inlet subcooling temperature (11.4 °C – 23.5 °C) 

l  Experiments included in RELAP5/Mod3.3 Validation matrix 
(volume 3) but not in RELAP5-3D developmental assessment 
documents (volume 3) 
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Experimental validation at low pressures: Zeitoun and Choukri 
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Experimental validation at low pressures: Zeitoun and Choukri 
l  RELAP5-3D predictions underestimated, especially for high q/m 
l  RELAP5-3D void fraction estimation quite less sensitive to 

experiments condition: void fraction prediction very limitedly 
affected by experimental boundary conditions 

l  Approaching the experimental channel top, RELAP5-3D 
predictions often present a maximum in the void fraction function 
(void fraction decreasing while channel is still heated) 

l Other parameters such as wall temperature and water outlet 
temperature are in acceptable agreement 

l  Possible reason: 
l RELAP5-3D two-phase SNB model based on former RELAP5/

Mod3.2 model (mainly based on high pressure subcooled boiling 
data) 
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Experimental validation at low pressures: THTL 
l  Different experiment: Thermal-Hydraulic Test Loop 

l Void generation in heated channel 
l Experimental conditions: 

l Coolant: light water, upward flow 
l Inlet coolant temperature: 45°C 
l Outlet pressure: 1.7 MPa 
l Local heat flux range: 0.7–18 MW/m2 
l Corresponding exit velocity range: 2.8–28.4 m/s 
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Experimental validation at low pressures: THTL 
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Experimental validation at low pressures: THTL 
l  Difference with respect to experimental data increases with 

applied heat flux 
l Above 8 MW/m²: code simulation crashes with Onset of Fluw 

Instability 
l This behavior is common for both RELAP5-3D and RELAP5/Mod3.3 

codes 
l  At higher pressure (similar to MYRRHA SCS normal operating 

conditions) there is no observed divergence between the two 
codes 

l  Void fraction plotted in function of mass flow rate shows also a 
good agreement between the two codes 
l Some disturbances only arising when operating at higher heat fluxes 

l  Two codes found in good agreement at a pressure of ~17 bar 
(~MYRRHA SCS operation) 
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Conclusions 
l  Several transients studied for MYRRHA reactor pre-licensing 

involve the depressurization of the Secondary Cooling System 
(SCS), cooled by low pressure two-phase water mixture 

l  RELAP5-3D overestimates, with respect to RELAP5/Mod3.3, the 
freezing time (~1600 s vs. ~800 s), with potential consequences 
on the LBE freezing conservative predictions. This is caused by 
the SCS temperature prediction between the two codes 

l  The code benchmarking for low pressure showed some 
shortcomings and limitations of RELAP5-3D subcooled model at 
low pressures 

l  Predictions of the two codes are found to be in good agreement 
with experiments at pressures above ~10 bar. In particular, 
experimental evidence proves the correct behavior at 17 bar. 
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