
RELAP5-3D Architectural
Upgrades through Gnu
Fortran Adaptation

Date (9/16/2021 or 9/17/2021

Dr. George Mesina

Outline

• Reasons/History of Upgrades

• Advantages

• Issues

• Results

• Conclusions

Reasons to upgrade code architectural

• Must keep concurrent with evolving computer industry or become

obsolescent and non-working.

− Programs that do not adapt cease to function

• NPA (Nuclear Plant Analyzer), XMGR5, TkXMGR5, RGUI

• Proprietary Unix, Old Windows (E.G. Windows 2000)

• Must answer modern user needs or get replaced

− Old languages: Algol, Cobol, Simula

− AOL, My Space, etc.

− B&W visuals, slow-running, fixed memory size, etc.

History of RELAP5 architectural upgrades

Massive important upgrades

• Fortran 66: original RELAP5 coding

• Fortran 77: conversion after the compilers stabilized in mid-80’s

• Fortran 90: Early 2000’s

• Fortran 95: 2010

• G-Fortran: 2019

− Required Fortran 2003 transformation

− Elements of Fortran 2008 added

History of RELAP5 architectural upgrades

• Adapt to new machines as they become available, mid-80’s &

ongoing (Large efforts)

− CDC; Cray; Cray2; DEC: RISC, RISC2, Alpha; HP; IBM

(various); SGI; Stardent; SUN-Solaris; Windows; Apple

Macintosh (Briefly)

− This included taking advantage of special native hardware and

proprietary compilers.

• Ongoing Operating System Adaptations (Large efforts)

− CDC: NOS, NOS/BE, etc.

− Unix: UNICOS, IBM, HP, SGI, SUN, DEC

− Windows: 95, 98, ME, XP, 7, 10, …

− LINUX: Red Hat, SUSE, CYGWIN, …

History of RELAP5 architectural upgrades

• Processing mode (massive efforts)

− Scalar: original

− Vector: mid-80s through mid-00s

− SMD Parallel: (Cray dirs., Open-MP), late 80s to mid-00’s

− DMD Parallel: PVM coupling to self, 1990’s - 2012

• Coupling with other programs (massive efforts)

− PVM Executive, ongoing

− Special connections: STAR-CCM+, PHISICS, MOOSE (begun)

− Via & disk-file transfer

History of RELAP5 architectural upgrades

• Restructuring to strongly modular coding, mid-00’s

• Resizable Memory: Fortran 90/95, modules, derived types,

pointers…, mid-00’s

• “Perfect time stepping” based on integers

− This synchronizes time advancement among coupled codes

• Refactoring: ongoing

Advantages of upgrade to G-Fortran

• Versatility: Able to build with another mainline Fortran Compiler

increases reliability

− Reliability – the probability of failure-free operation for a

specified period of time in a specified environment

− Each compiler catches runtime errors the other’s miss and so

eliminates future User Problems

• Longevity – GNU Fortran will be around as long a C and Linux

− GNU translates Fortran to C, then compiles it in C.

• Fortran 2003 standard

− Strictness of application of the standard varies with compiler

Advantages of upgrade to G-Fortran

• Software quality – Code written to an ANSI standard survives

− Vendors extensions to the language become, years later:

• Unsupported

• Redefined by future standards to perform differently

− Library quality software is written w ANSI Fortran standards

• Even some FORTRAN66 library software still compiles &
runs on current compilers and O/S

• Portability – ANSI Standard software works on evolving platforms

− It disallows specialized coding that accesses special hardware
that does not survive computer evolution

• Maintainability – Easier and less time-consuming to maintaina dn
develop

Development of GNU and Fortran 2003

compilation capability

• Mostly manual work with assists from scripts where possible

• Proceed directory by directory, upgrading all files within.

• Order of upgrades induced by usage precedent.

1. XDR – eXtended Data Representation, machine-indep. Binary

2. Modules – Directory of Common F90 modules

3. Envrl – service subprograms: solvers, interpolators, fluid properties

4. LApack – some math subprograms

Operation and Issues

5. Rellic – RELAP5-3D license control

6. Jacdir – Jacobian matrix calculation

7. Relap – Program input, physics calculations, and output

8. Polate – auxiliary standalone fluid property generator

9. Fluids – Generators for the many fluids RELAP5-3D can use

10. R5exec – PVM coupling capability

Preparation for the upgrade

• CIVET source code requirements

− No trailing whitespace allowed. All removed

− No tabs allowed in source code. All replaced

− Certain keywords disallowed. Removed or replaced.

• Add a GFORTRAN option to all major installation scripts

− Some new scripts created because the Makefile of some sub-
directories only accessed IFORT. E.G. LAPACK, Jacobian,
polate

• Add Fortran 2003 compiler flag to IFORT and GFORTRAN

• Split lines of source code that exceeded132 character length limit.

Issues overcome: Compiler failings

• Level of compiler matters.

− Several GNU compilers available in INL HPC.

− Default compiler could not handle some Fortran 2003 construct

− Cannot mix two (very) different levels of GNU Fortran

• Scripts and Makefiles

− Work out compatible naming convention for Fortran source files

• Name mangling of C-language coding

− Location prefix and postfix underscores prevented linking with GNU

compiled Fortran at first

Issues overcome: Declaration Issues

• GFORTRAN compiler flag for default 8-byte reals turns “double

precision” declaration statement into 16-byte reals

− FIX: Turned “D” exponents into “E” exponents. 1.0D0 -> 1.0E0

− FIX 2: Turned dabs, dexp, dsqrt, dlog, etc. into abs, exp, sqrt, log, …

• Star-before-length declaration no longer allowed

− ERROR: real*8, character*20, etc.

− FIX: real(8), character(20), etc.

Issues overcome: Declaration Issues

• Mismatched array shapes disallowed

− ERROR: real(sdk), parameter :: a(10,7) = (/ vector of 70 numbers /)

− FIX: real(sdk), parameter :: a(10,7) = reshape (a_temp, [10, 7])

• Equivalence of numbers to characters disallowed in Fortran 2003

− Remove character from equivalence w numbers (R-level)

− Use the internal read or write to transfer where needed

Issues overcome: Subprogram type issues

• Call arguments & dummy arguments types and attributes

(dimensionality, pointer, etc) must match EXACTLY

− Kind matters: Cannot pass 16-byte or 4-byte to an 8-byte dummy or

character of one length to character of another: link or runtime error

− Some PIB (XDR) transfer functions pass real to integer or vice-versa

• Use Fortran TRANSFER function to move bits from one to other

− Cannot scalar to a length one vector, or vector to matrix (ENVRL)

• Dummy variable type adjust for constants when linking

− ERROR: call openPibExportFile(err,0,tpfname,pname,vers,desc)

− Compiler sets 0 to default, but dummy arg is type pitk, so declare a

variable of dummy’s type, set it to the constant, and pass it.

Issues overcome: Subprogram issues

• Statement functions are not allowed in Fortran 2003

− Turn them into contained (internal) function subprograms

• Access to O/S procedures superceded by Fortran intrinsics

− getarg replaced by get_command_argument

− iargc replaced by command_argument_count

• New IEEE modules provide many constants, such as NaNs, for

various uses, though accessing the IEEE module proves tricky.

− Intel and GNU Fortran at odds, many ways that work for one

fails for the other

Issues overcome: Format issues

• Cannot continue a character string to the next line. Must break

• Commas required between format specifiers, even at end of line

• Format specifier “x” not allowed. Replaced by “1x”

• Field length required

− “10 format (a10)” not “10 format (a)”

− read (5,'(a10,x,i5)’) name, j not read (5,'(a10,x,i)‘ name, j

Issues overcome: Execution issues

• Jumps into a “body” block of code from outside is an error

− E.G. if-then-block, else-block, do-loop body

• Initialize all logical variables because uninitialized can default to

true or false depending on O/S and level of Fortran compiler

− Caused restart and strip problems to fail until all were tracked down

and initialized

Issues overcome: Operating system issues

• GMAKE sees files with the mod extension as source code for
programming language MODULA and, at random

− Creates a modula compiler command that fails and aborts the
build

− This happens with newtype.mod (frequently, not always) and
rarely with any other mod-file

• Use of cpp, not fpp, required with GNU Fortran in fluids directories
where more than one pre-compiler directive is invoked.

Issues overcome: Ifort vs Gfort issues

• Format

− Gnu Fortran won’t print floating point in z-format, only integers

− Intel Fortran does not allow 16-byte integers (verification

hexadecimal notation)

− FIX: A new if-def in verifymod.

• Made uniform set of Makefiles for fluids directory

− Had to overcome naming convention issues for suffixes

• F90 and f90 allowed for Fortan 90+ with Intel, not GNU

• F03 allowed with GNU not Intel

Summary

• All 10 directories converted

• Converted to Fortran 2003 first, then upgraded to GNU Fortran

• Intel and GNU Fortran compilers have incompatible differences

− Found workarounds through numerous coding experiments

• Massive code modification

− Over 50% (1230 of 2394) Fortran source code files changed.

• Comparisons on Linux between compiling with IFORT and GFORTRAN

− Fluid asci table files, *.pr, identical, except H2O 1967

− All standard installation problems run

• Code builds and runs correctly with both compilers

