RELAP5-3D Analyses for the US-DOE LWRS/RISMC Program, Industry Application #2

Carlo Parisi, Steven R. Prescott, Justin L. Coleman, Ronaldo H. Szilard

IRUG Meeting October 6-7, 2016 Residence Inn, 635 West Broadway Idaho Falls, ID, USA

Nog. Idaho National Laboratory

Topics

- LWRS/RISMC Overview
- Industry Application #2 (IA #2) Motivation
- IA #2 Toolkits for External Events Analysis (EEVE-A & EEVE-B)
- IA #2 INL Generic-PWR application
 - RELAP5-3D Model
 - SBO Results
 - UQ
- Coupled analysis

LWRS/RISMC – Focus on Tools / Data / Methods

IA #2 – Motivation

- Goals of the RISMC Pathway
 - Develop and demonstrate a <u>risk-assessment method</u> coupled to <u>safety margin quantification</u>
 - Create an advanced "RISMC toolkit"
- IA#2 Motivation: to perform an advanced risk analysis of accidental events caused by a combination of natural external hazards, i.e. earthquake and flooding
 - Use of INL advanced simulation tools & methods
 - Perform <u>realistic</u> risk analysis for a generic PWR/BWR
 - Study NPP behavior under:
 - Internal/External flooding scenario caused by EQ (e.g., EQ-induced pipe rupture, levee break)
 - Outcomes for FY16:
 - Risk analysis of scenarios caused by external events, <u>using realistic plant models</u>, <u>simulations</u> <u>and uncertainties</u> (for a generic PWR)
 - Two toolkits (External EVEnts toolkits, EEVE) + pathways are defined

Evolution of Nuclear Power Plant External Hazards Risk Assessment and Management

The Toolkits: EEVE-B & EEVE-A

Baseline Demonstration [EEVE-B]

- Use of existing, validated & state-of-the-art tools (e.g., <u>RELAP5-3D</u>)
- one-way coupling
- generic NPP
- No EQ uncertainty analysis

- Advanced Component [EEVE-A]
 - Use of advanced INL tools (e.g., RELAP-7),
 - Direct coupling (e.g., flooding-RELAP7),
 - Detailed NPP (industry feedback needed),
 - Use of Reduced Order Model (ROM) & Surrogates
 - Advanced Seismic probabilistic risk analysis (ASPRA)

Baseline Demonstration (FY2016)

- 5 Phases identified for the Baseline Demo
 - 1) Simulate effects of EQ on a NPP SSCs using advanced seismic analysis methodology
 - Use of Non-linear soil-structure interaction (NLSSI) methodology [LS-DYNA]
 - Piping fragilities evaluation [OPENSEES]
 - 2) Simulate NPP flooding scenarios caused by EQ-induced pipe rupture [NEUTRINO]
 - 3) Simulate NPP primary circuit + part of BOP dynamics [RELAP5-3D]
 - 4) Apply S/U analysis [RAVEN]
 - 5) Evaluate risk of different scenarios (ranking) using simplified PRA analysis [EMRALD]

IGPWR Basic Information

- INL-Generic PWR (IGPWR) defined for EE analysis
- Main Characteristics:
 - 3 Loop PWR / NSSS by Westinghouse
 - Core average power: 2546 MW_{th} [855 MW_e]
 - Core: 157 FA [15x15 Westinghouse FA]
 - Sub-atmospheric Containment

IGPWR ESF

Value (SI units)	Value (British units)
2,546	
282/319	540/ 606
157	
15x15	
12,738	101.6E+8
15.5	2,250
3.78E-3	8
1.42E-3	3
5.22	7,000
3	
16.2 / 15.7	2,350 / 2,280
2 x 22.5	2 x 179,000
16.4 / 17.7	2,375 / 2,575
3 x 37,0	3 x 293,330
113.4	9.0E+5
6.89	1000
36.8	1300
25.5	900
1 x 47.0	1 x 3.73E+5
7.24 / 6.89	1,050 / 1,000
5 x 94.0	5 x 7.46E+5
8.16 / 7.53	1,184 / 1,092
5.49	796
41,639	91,798
166	5,868
	Value (SI units) 2,546 282 / 319 157 15x15 12,738 15.5 3.78E-3 1.42E-3 5.22 3 16.2 / 15.7 2 x 22.5 16.4 / 17.7 3 x 37.0 113.4 6.89 36.8 25.5 1 x 47.0 7.24 / 6.89 5 x 94.0 8.16 / 7.53 5.49 41,639 166

Seismic Analysis

Seismic Hazard Cure

- Calculation of Non Linear Soil-Structure Interaction (NLSSI) by LS-DYNA code
 - Use of generic soil
 - Propagation of EQ ground motion
 - Acceleration Response Spectra
- Piping analysis by OPENSEES code
 - Determination of fragility curves (PGA vs Probability of Failure)

117

Seismic Fragility Curves

PRA Analysis – EMRALD code

- EMRALD code simulates an equivalent model to the SAPHIRE PRA Model in a time driven manner
- PWR Simplified LOSP and SBO event trees implemented
- Run RELAP5-3D [when possible fuel damage could occur] & NEUTRINO [when flooding could occur] codes
- Process RELAP5-3D & NEUTRINO results into the final result probabilities

Station Blackout Event Tree

Main Fault Tree

EMRALD logic

Path Given for External Events simulation

- 1. IE EQ causing LOOSP
- 2. Calculation of **Peak Ground** Acceleration (PGA) for given EQ
- Evaluate DG availability given EQ (LOOSP → SBO yes/no)
- 4. Determine Pipe Failures (yes/no)
- 5. Run 3D **NEUTRINO** flooding Simulation
- 6. Run multiple samples for additional component failure rates, given EQ
- 7. Run **RELAP5-3D** given all component failures
- 8. Log Fuel Damage

EMRALD Workflow

NEUTRINO Internal Flooding Model

Switchgear Room 1 – NEUTRINO Flooding Simulation

> to RELAP5-3D simulation

	SWITC	HGEAR R	DOM 1
Equipment ID	Description	Heigh t*	Affected Comp./Systems
BAT-1-A	control storage battery	18 in.	TD-AFW SG & PRZ PORV Switchgear (close and tripping power for all 12,47/4.16 KV and some 480 V breakers) Annunciators EDG (air start solenoid, fuel pump power, control circuit) Control Panels Emergency Lighting Vital Bus Inverters
BAT-1-B	control storage battery	18 in.	TD-AFW SG & PRZ PORV Switchgear (close and tripping power for all 12.47/4.16 KV and some 480 V breakers) Annunciators EDG (air start solenoid, fuel pump power, control circuit) Control Panels Emergency Lighting Vital Bus Inverters
SWGR-4KV-1	4160V medium voltage switchgear (and components)	4 in.	Out of mission time (8hr)
LC-480V-1	480V load center (and components)	6 in.	Out of mission time (8hr)
BAT-CHGR-1-A	battery charger	4 in.	Out of mission time (8hr)
BAT-CHGR-1-B	battery charger	4 in.	Out of mission time (8hr)
125VDC-PNL-1	125V DC distribution panel	16 in.	TD-AFW SG & PRZ PORV Switchgear (close and tripping power for all 12.47/4.16 KV and some 480 V breakers) Annunciators EDG (air start solenoid, fuel pump power, control circuit) Control Panels Emergency Lighting Vital Bus Inverters
UPS-1-A	vital bus UPS (and components)	12 in.	Vital Instrumentation (Reactor Protection System)
	the first state of the state	4.0.1	the state of the second s

Components Affected by Flooding

IGPWR – RELAP5-3D modeling

- INL RELAP5-3D model for the IGPWR based on the INL RELAP/SCDAP model by *P. Bayless* (NC studies for SBO Analysis)
 - 208 volumes / 248 junctions
 - 240 HS / 1312 mesh points
- Primary System
 - RPV, 3 main circulation circuits (SGs, MCPs, HLs and CLs, PRZ)
- Secondary side: Steam Lines until MSIV, MFW/AFW inlet
- Core configuration:
 - 3 hydraulic channels connected with junctions (cross flow simulation) → representing 3 different core zones: central, middle and outer core zones [different power]
- 🔶 no BOP
- ho Containment

SG, PRZ, MCP, HL/CL

Core barrel - Core bypass -- Core baffle

Center channel 25 fuel assemblies

relative power

P394-I NR7017-13

Outer channel 36 fuel assemblies relative power = 0.76 Middle channel 96 fuel assemblies relative power = 1.05

IGPWR – RELAP5-3D modeling

- Nodalization review:
 - Updated the input deck to RELAP5-3D syntax
 - Developed a new core model
 - ✓ Updated the RCS to upgraded power conditions (from 2411 to 2546 MWth)
- Nodalization provisions for modeling possible EQ-induced accidents → SBO event simulation capabilities
 - Mitigation actions included, e.g.:
 - SG depressurization by operator at 100 F/hr
 - mobile pump injection
 - TD-AFW blackrun
 - Boundary Conditions (timing of events) to be provided by EMRALD/NEUTRINO flooding analysis
 - EQ-induced Internal flooding → k.o. of some ESF (e.g., battery rooms, HPIS switchgear, etc.)
 - Simulations run up to the onset of fuel damage (RELAP5-3D applicability range)

IGPWR-RELAP5-3D modeling

Steady State Results

Parameter	Reference Value	RELAP5-3D value	Deviation (%)
Reactor Power (W)	2,546	2,546	imposed
PRZ pressure (MPa)	15.5	15.5	imposed
Total RCS coolant loop flow rate (Kg/s)	12,738	12,738	0.0
		557.3	0.3
CL Temperature (K)	555.6	557.3	0.3
		557.3	0.3
		593.1	0.2
HL Temperature (K)	591.8	593.1	0.2
		593.1	0.2
	501.5	501.5	imposed
Feedwater Temperature (K)		501.5	imposed
		501.5	imposed
		470.1	-0.6
Steam flow rate per SG (Kg/s)	473	470.7	-0.5
		471.0	-0.4
		5.405	imposed
Steam Pressure at the Outlet Nozzle (MPa)	5.405	5.405	imposed
		5.405	imposed
		41,640	0.0
Liquid mass per SG (Kg)	41,639	41,638	0.0
		41,638	0.0
		542	0.0
Steam Temperature (K)	542	542	0.0
		542	0.0

EQ-induced SBO – Bounding Scenarios

- Reference reports for Boundary Conditions & Validation:
 - US NRC **SOARCA** Report, NUREG/CR-7110, Vol. 2
 - "Analysis of core damage frequency: Surry, Unit 1 internal events", NUREG-CR-4550, Vol.3, Rev.1, Pt.1.
- Different SBO scenarios analyzed:
 - Un-mitigated
 - Long-Term SBO (fuel failure in ~14 hrs)
 - Short-Term SBO (fuel failure in ~2.5 hrs)
 - Mitigated
 - Long-Term SBO (no fuel failure)
 - Short-Term SBO (fuel failure in ~2.5 hrs)
 - Early Failure of MCP considered for all the above cases
 - MCP leak 182 gpm @ t=+13 min
- Above scenarios bound all possible cases considered by PRA & EMRALD/NEUTRINO

Bounding Scenarios – Unmitigated LTSBO

EVENT DESCRIPTION	TIME [hh:mm] INL / RELAP5-3D (SOARCA report / MELCOR)
Initiating event Station blackout – loss of all onsite and offsite AC power	00:00
Reactor trip, MSIVs close RCP seals initially leak at 21 gpm/pump (~1 Kg/s)	00:00 (00:00)
TD-AFW auto initiates at full flow	00:01 (00:01)
First SG SRV opening	00:15 (00:03)
Operators control TD-AFW to maintain level	00:15 (00:15)
Operators initiate controlled cooldown of secondary at ~100 F/hr (~55.5 C/hr)	01:30 (01:30)
Upper plenum water level starts to decrease	01:40 (01:57)
Accumulators begin injecting	02:34 (02:25)
Vessel water level begins to increase	02:35 (02:30)
SG cool-down stopped at 120 psig (9.29 MPa) to maintain TD-AFW flow	03:41 (03:35)
Emergency CST empty	~06:20 (05:00)
DC Batteries Exhausted / SG PORVs reclose	08:00

ECST Capacity

Bounding Scenarios – Unmitigated STSBO

EVENT DESCRIPTION	TIME [hh:mm] INL / RELAP5-3D (SOARCA report / MELCOR
Initiating event	
Station blackout – loss of all onsite and offsite AC power	00:00
Reactor trip, MSIVs close	00:00
RCP seals initially leak at 21 gpm/pump (~1 Kg/s)	(00:00)
TD-AFW auto initiates at full flow	00:01 (00:01)
EQ damage of ECST and of Auxiliary Buildings	00:01.6
Loss of TD-AFW & Loss of DC power	(N/A)
	00:04
First SG SRV opening	(00:03)
Operators control TD-AFW to maintain level	N/A
	01:06
SG Dryout	(01:16)
	01:12
Pressurizer SRV open	(01:30)
Start of fuel heatup	01:58
	(01:57)

hitemp-111100912 httemp-112100912 httemp-113100912

Time (her) Fuel Clad Temperature

1500

500

05 1 15 2 25 3

Bounding Scenarios – Mitigated LTSBO

EVENT	TIME [hh:mm] INL / RELAP5-3D (SOARCA report / MELCOR)		
DESCRIPTION	MCP seal leakage (21 gpm)	Early MCP seal failure (182 gpm)	
Initiating event Station blackout – loss of all onsite and offsite AC power	00:00	00:00	
Reactor trip, MSIVs close	00:00	00:00	
MCP seals initially leak at 21 gpm/pump (~1 Kg/s)	(00:00)	(00:00)	
TD-AFW auto initiates at full flow	00:01	00:01	
RCP seal fail, leaking 182 gpm/pump	N/A	00:13 (00:13)	
First SG SRV opening	00:15 (00:03)	00:15 (00:03)	
Operators control TD-AFW to maintain level	00:15 (00:15)	00:15 (00:15)	
Void Formation in the UH	01:41	00:27	
Operators initiate controlled cooldown of secondary at ~100 F/hr (~55.5 K/hr)	01:30 (01:30)	01:30 (01:30)	
UP water level starts to decrease	02:02 (01:57)	00:38 (01:13)	
Accumulators begin injecting	02:34 (02:25)	02:15 (02:15)	
Vessel water level begins to increase	02:36 (02:30)	N/A	
Start emergency diesel pump for injection into RCS	03:30 (03:30)	03:30 (03:30)	

EQ-induced SBO – Bounding Scenarios – Mitigated LTSBO

EVENT	TIME [hh:mm] INL / RELAP5-3D (SOARCA report / MELCOR)		
DESCRIPTION	MCP seal leakage (21 gpm)	Early MCP seal failure (182 gpm)	
SG cool-down stopped at 120 psig (9.29 MPa) to maintain TD-AFW flow	03:43 (03:35)	03:43 (03:35)	
ECST empty. Operator activate a portable, diesel- driven pump (Godwin pump) for supply water to the TD-AFW	~07:35	~08:44	
DC Batteries Exhausted. Operator actions control the secondary pressure at 120 psi and maintain TD-AFW flow	08:00	08:00	
Level maintained at the CL elevation with emergency pump	N/A	12:38	

20

ECST / AFW Capacity

Bounding Scenarios

- Mitigated STSBO
 - Immediate loss of TD-AFW
 - Recovery actions (e.g., primary side depressurization, Kerr pump injection) not available before t~2hr
 - Scenario always ended up in fuel damage → no EMRALD?
 RELAP calculations

Mitigated LTSBO & Battery Failure for internal flooding

- Failure of Batteries (→ TD-AFW) supposed to happen during first 1 hr from the EQ
- Fuel Failure depending by the recovery time and the MCP leakage rate
- Fuel failures maps help to reduce number of RELAP5-3D calculations
 - RELAP5-3D runs executed by EMRALD when BC are in fuel status uncertain zone
 - e.g., MCP seal leakage 21 gpm, battery failure t=1000 s, 3 hr < recovery time < 3.5 hr

Mitigated STSBO

	Recovery Time (hr)			
Batteries Failure 11me (s)	1.5	2	3	3.5
0.0	S	S	F	F
1000.	S	S	S	E
2500.	S	S	F	F
3600.	S	S	5	E

Mitigated LTSBO + Battery Failure for Internal Flooding

Detterio Dellas Time ()	Recovery Time (hr)			
Batteries Failure Time (s)	1.5	2	3	3.5
0.0	S	S	F	F
1000.	S	S	F	Ē
2500.	S	S	Ŧ	F
3600.	S	8	T I	F

Mitigated LTSBO + Battery Failure for Internal Flooding + Early MCP Seal Failure

RELAP5-3D/RAVEN Uncertainty Analysis

- Quantification of uncertainties on the RELAP5-3D deterministic calculations results needed
- RAVEN code applied to RELAP5-3D for performing uncertainty quantification (→ tomorrow afternoon workshop for details)
- Simplified UQ performed for testing chain of codes capabilities
 - Simplified PIRT for Mitigated-LTSBO
 - Important TH phenomena influencing the PCT
 - NC in primary loop
 - Secondary Side Mass Inventory loss through SG SRV/ PORV
 - Primary Side Mass Inventory loss through MCP seal PRZ SRV/PORV
 - Heat Transfer between primary/secondary system
- Selected RELAP5-3D input parameters to be perturbed by RAVEN code:
 - Decay power
 - MCP Seal LOCA break area
 - Core Pressure losses
 - Valves flow areas
 - Heat Exchange multiplier

Coupled EMRALD/NEUTRINO/RELAP5-3D

- Sensitivity Analysis showed that MCP seal mass flow has negligible effect on PCT
- Remaining four parameters perturbed using Monte Carlo sampler and assigned PDF
- Wilks`s formula applied:
 - 59 calculations for 95% fractile/ 95% confidence limit on PCT

Run #	Sensitivity Parameter
Reference Case	Nominal values
1A	Core Decay Heat +7 %
1B	Core Decay Heat -7 %
2A	Reduction of RPV internal circulation mass flow
2B	Increase of RPV internal circulation mass flow
ЗA	SG/PRZ PORV and SRV valve flow areas increased by 30%
3B	SG/PRZ PORV and SRV valve flow areas decreased by 30%
4A	MCP seal LOCA +20 gpm
4B	MCP seal LOCA -20 gpm
5A	SG HX Multiplier +20%
5B	SG HX Multiplier -20%

Coupled EMRALD/NEUTRINO/RELAP5-3D

- Coupled calculations EMRALD/NEUTRINO/RELAP5-3D run
- NEUTRINO calculation (flooding) computational expensive → minimization of RELAP5-3D calculations using pre-calculated failure maps
- CDF for EQ-induced SBO obtained

Parameter	Value
Total EMRALD runs	67,877,823
Total Running Time	~263 hours
Significant EQ Events	4311
SBO Events	258
NEUTRINO simulations	261
RELAP5-3D indirect calculations	245
RELAP5-3D direct calculations	3

Event	Probability (events/year)
EQ induced SBO	3.80E-6
CDF	2.84E-8
CDF w/o RELAP5-3D feedback	1.47E-8

Summary

- Methodology & Tools for LWRS/RISMC IA#2 defined
- Two toolkits and pathways defined (EEVE-A and EEVE-B)
- Combined calculations of Structural Mechanics/PRA/Flooding/ System Thermal-hydraulic/UQ performed
- **RELAP5-3D** provided reliable BE TH analysis for PWR SBO event
 - Coupled to EMRALD/NEUTRINO and RAVEN codes
- Activities continuing during FY2017
 - External flooding and detailed NPP model (NPP licensee feedback)

aho National Laboratory

Idaho National Laboratory

The National Nuclear Laboratory

