

Center for Advanced Energy Studies

Qualitative and Quantitative Evaluation of Coupling Approaches for Coupling of RELAP5 and LabVIEW

Joshua Pack, Zheng Fu, and Fatih Aydogan Mechanical Engineering Department University of Idaho

> IRUG Conference Idaho Falls, ID 2015

College of Engineering

University of Idaho

Outline

systems Grou

University of Idaho

- Main Motivation
- Background
- LabVIEW
 - Main Secondary Loop Components modeled in LabVIEW
 - LabVIEW models
- RELAP5
- Simulation Results
- Conclusion

Main Motivation

ANSG

Advanced Nuclea Systems Group

- Typical Pressurized Water Reactor(PWR) contains two main coolant loops.
 - The Primary coolant loop including the reactor, pumps, Pressurizer, and the primary side of the steam generator.
 - The Secondary coolant loop contains the Secondary side of the steam generator, the turbine generator, condenser, pumps, and other feed water heaters.

University of Idaho

LabVIEW

Why LabVIEW

- Have a user friendly Graphical User Interface GUI
- Instrumentation analysis capabilities
- GUI based programing and display methods.
- Simple program modification to match specific systems

University of Idaho

Components Modelled with LabVIEW

- Steam Generator
- Turbine
- Condenser
- Feed water pumps
- Feed water heaters

• The steam turbine model uses standard thermodynamic equations as well as:

*Chaibakhsh, Ali and Ghaffari, Ali. 2008. Steam Turbine Model. Simulation Modelling Practice and Theory 16 pp.1145-1162.

College of Engineering

http://www.energy.siemens.com/hq/en/fossilpower-generation/steam-turbines/sst-9000.htm

University of Idaho

Secondary Loop Components: Condenser

• The heat transfer coefficient is calculated using the Butterworth* method:

•
$$h_N = \left[\frac{1}{2}h_{sh}^2 + \left(\frac{1}{4}h_{sh}^4 + h_l^4\right)^{1/2}\right]^{1/2}$$

• Where

•
$$h_{sh} = 0.59 \frac{k_l}{d} \widetilde{Re}^{1/2}$$

•
$$h_l = 0.728 \left(\frac{k_l}{d}\right) \left[\frac{\rho_l(\rho_l - \rho_g)gh_{fg}d^3}{\mu_l(T_{sat} - T_w)k_l}\right]^{1/2}$$

• $\widetilde{Re} = \frac{\rho_l u_g d}{\mu_l}$

*As demonstrated in Prof. Kakac's book of "Heat Exchangers: Selection, Rating, and Thermal Design", ISBN-13: 978-0125041904 College of Engineering

stems Grou

Cond h

Cond h

Nu.d

1.23

Ср

F0007

NTU

Result

FOCIO

h.i

T.c in (Degrees F) 59

F0000

effectivenes

(e) Resu

F0000

U

g.max (Btu)

×

O(Btu

 The heat exchanger calculations are performed using the following equations from the NTU* Method h.o

College of Engineering

12

ystems Grou

 For the feed water heater the following convection coefficient method was used

Secondary Loop LabVIEW Model

ANSG

Advanced Nuclea Systems Group

ANSG

Advanced Nuclea Systems Group

Steady State Simulation Results

Heat Structure 150-02 Primary Side Heat Flux Heat Flux Percent Error Percent Error 25.00% 20.00% 15.00% 10.00% 5.00% 0.00% 600 0 200 400 800 1000 T (sec) College of Engineering

ANSG

Advanteo skutte

Simulation Results and Data Comparison

Primary system temperatures during LOCA

College of Engineering

Percent difference of heat structure surface temperatures on primary side steam generator between coupling code and RELAP5 code

Conclusion

- The use of LabVIEW in the framework allows the connection of an experimental apparatus for real-time data exchange.
- Our validation results for multi-loop validation studies show that the framework works efficiently.
- Two different coupling approaches were tested.
- While both approaches are quite accurate, the coupling approach which lacks a steam generator provides results have a good agreement with RELAP5 standalone results

University of Idaho

20

Questions?

College of Engineering

University of Idaho