www.inl.gov

Equation of State for PbLi

Paul W. Humrickhouse

2018 International RELAP5 Users Group Seminar Idaho Falls, ID

User Problem #15059

PbLi properties differ by 10-15% from generally accepted measured • values (L. Batet, 2015 IRUG):

2015 International RELAP5 Users Seminar Idaho Falls, Idaho, August 13-14, 2015

Some History

- The capability to model alternate fluids was added to RELAP/ATHENA in the early 1990s
- Liquid metal thermodynamic property tables (*P*, *v*, *T*, c_p , α , κ_T) were computed using equations of state published for pure fluids in the 1970s¹
- These were fitted to data inexactly owing to limitations in computing power at the time
- The RELAP5-3D implementation for mixtures uses a mass-weighted average of the pure component parameters
- Inaccuracies arise because:
 - Parameters are exponents or are raised to exponents
 - PbLi mixtures form "some of the most dramatically non-ideal solutions known"²

^[1] D. A. Young, A soft-sphere model for liquid metals, UCRL-52352, LLNL (1977).

^[2] R. E. Buxbaum, Journal of the Less-Common Metals 97 (1984) 27-38.

Soft Sphere equation of state

Helmholtz free energy a(v, T):

 $\frac{a}{NkT} = -1 - \ln\left(\frac{v\left(2\pi kT\right)^{\frac{3}{2}}}{h^3 N^{\frac{5}{2}}}\right) + C_n\left(\frac{\sigma^3}{\sqrt{2}}\frac{N}{v}\right)^{\frac{n}{3}} \left(\frac{\varepsilon}{kT}\right) + \frac{1}{2}\left(n+4\right)Q\left(\frac{\sigma^3}{\sqrt{2}}\frac{N}{v}\right)^{\frac{n}{9}} \left(\frac{\varepsilon}{kT}\right)^{\frac{1}{3}} - \left(\frac{\sigma^3}{\sqrt{2}}\frac{N}{v}\right)^m \left(\frac{\varepsilon}{kT}\right) + \frac{E_{coh}}{NkT}$

. o = 300 MPa

= 300 MPa

2000

Enthalpy, H ---MJ/kg

0 1.6 0// 1.4 1.2

Sound speed, c - km/s

0.6

Lead

- Fit parameters: *n*, *m*, *Q*, ε , $\sigma^3/\sqrt{2}$
- Original fitting procedure¹:
 - Fix *n*, *m*, and *Q*
 - Solve P=0 and $u=h_m$ at (v_m, T_m) for ε , $\sigma^3/\sqrt{2}$
 - Adjust *n*, *m*, and *Q* to better match data
 - Not "carried... to an extreme precision of fit"¹

PbLi parameters

MIPa	N	$3.4772 imes 10^{24} atom/kg$
	C_n	6.0718
	E_{coh}	$1.096 imes 10^6J/kg$
	n	10.951
	m	1.048
	Q	0.853
< -	ε	$1.74885 \times 10^{-18} J/atom$
MPa	$\sigma_{ss}^3/\sqrt{2}$	$9.19694 \times 10^{-30} m^3/atom$
Temperature - K		

- New strategy: •
 - Actually fit the EOS to all available thermodynamic property data for PbLi

[1] D. A. Young, A soft-sphere model for liquid metals, UCRL-52352, LLNL (1977).

Available Data

Fig. 114. Experimental data on the vapor pressure of lead.

figure given in [309], and the latter should be considered too high (see page 29).

In [83, 84], the boiling point of lead was determined at 760 mm Hg in an inert atmosphere. The value was obtained from the horizontal segment of the heating curve plotted from readings of a thermocouple immersed in the metal. In the first mentioned study, the value obtained for the boiling

Idaho National Laboratory

Fig. 7 Temperature dependency of sound speed in liquid Pb-17Li

Computing properties from the EOS

 All thermodynamic properties are derivable from the Helmholtz free energy:

$$P(v,T) = -\left(\frac{\partial a}{\partial v}\right)_{T}$$
$$s(v,T) = -\left(\frac{\partial a}{\partial T}\right)_{v}$$

$$c_p = T\left(\frac{\partial s}{\partial T}\right)_P = T\left[\left(\frac{\partial s}{\partial T}\right)_v - \left(\left(\frac{\partial P}{\partial T}\right)_v^2 \middle/ \left(\frac{\partial P}{\partial v}\right)_T\right)\right]$$

$$w = \sqrt{\left(\frac{\partial P}{\partial \rho}\right)_s} = v \sqrt{\left(\left(\frac{\partial P}{\partial T}\right)_v^2 / \left(\frac{\partial s}{\partial T}\right)_v\right) - \left(\frac{\partial P}{\partial v}\right)_T}$$

Fitting Procedure

 Simultaneously minimize the (square) of the difference between all measured and calculated values:

$$\zeta^{2} = \sum_{1=m}^{M} W_{m} \left(\frac{y_{EOS,m} - y_{data,m}}{y_{data,m}}\right)^{2}$$

- Minimization performed using the nlm package in R¹
- Evaluating y_{EOS} not trivial:
 - Comparing to $\rho(T)$ data requires finding roots of $P(\rho, T) = P_{atm}$
 - Need to find all three and select the one corresponding to liquid
 - Same root finding necessary to evaluate $c_p(\rho, T)$ and $w(\rho, T)$
 - May not converge or find all roots when parameters are changing during optimization
 - Particularly for the saturation pressure, which requires solving a system of equations...

Idaho National Laboratory

Vapor Pressure

- Previously, the saturated volumes were computed by setting $P_{EOS}(v, T_{sat})$ equal to an *empirical* $P_{sat}(T_{sat})$ and solving for v
- But, the EOS *predicts* a unique $P_{sat}(T)$: instead, we can compare this to data, i.e. use vapor pressure data in the fit
- Computed from the EOS based on the fact that phases are in thermal, mechanical, and chemical equilibrium, i.e. they have the same:
 - Temperature (T_{sat})
 - Pressure (P_{sat})
 - Gibbs free energy:

$$P_{sat} = P(v_{\ell}, T_{sat})$$
$$P_{sat} = P(v_{v}, T_{sat})$$

$$P_{sat}\left(v_{\ell} - v_{v}\right) = a\left(v_{v}, T_{sat}\right) - a\left(v_{\ell}, T_{sat}\right)$$

Generalizing the EOS

 The form of the soft sphere equation of state proved not flexible enough to match density, specific heat, sound speed, and vapor pressure data simultaneously

• **Reorganize:** $d_{1} = \frac{n}{3} \quad d_{2} = \frac{n}{9} \quad d_{3} = m \quad s_{0} = -1 - \ln\left[\frac{(2\pi kT_{m})^{\frac{3}{2}}}{h^{3}\rho_{m}N^{\frac{5}{2}}}\right] \quad u_{0} = \frac{E_{coh}}{R_{s}T_{m}} \quad n_{1} = \left(N\rho_{m}\frac{\sigma_{ss}^{3}}{\sqrt{2}}\right)^{\frac{3}{3}} \left(\frac{\varepsilon}{kT_{m}}\right)C_{n}$ $t_{1} = 1 \quad t_{2} = \frac{1}{3} \quad t_{3} = 1 \quad n_{2} = \frac{1}{2}(n+4)Q\left(N\rho_{m}\frac{\sigma_{ss}^{3}}{\sqrt{2}}\right)^{\frac{n}{9}} \left(\frac{\varepsilon}{kT_{m}}\right)^{\frac{1}{3}} \quad n_{3} = -\left(N\rho_{m}\frac{\sigma_{ss}^{3}}{\sqrt{2}}\right)^{m} \left(\frac{\varepsilon}{kT_{m}}\right)$ $\frac{a}{R_{s}T} = s_{0} + u_{0}\left(\frac{T_{m}}{T}\right) + ln\left(\frac{\rho}{\rho_{m}}\left(\frac{T_{m}}{T}\right)^{\frac{3}{2}}\right) + \sum_{i=1}^{3}n_{i}\left(\frac{T_{m}}{T}\right)^{t_{i}} \left(\frac{\rho}{\rho_{m}}\right)^{d_{i}}$

• This is special case of a widely used standard form¹:

$$a = a^{o} + a^{r} \qquad \frac{a^{o}(\rho, T)}{R_{s}T} = c^{II} + c^{I}\left(\frac{T_{r}}{T}\right) + \ln\left(\frac{\rho}{\rho_{r}}\left(\frac{T_{r}}{T}\right)^{c_{0}}\right) + \sum_{i=1}^{I_{Pol}} c_{i}\left(\frac{T_{r}}{T}\right)^{t_{i}}$$
$$\frac{a^{r}(\rho, T)}{R_{s}T} = \sum_{i=1}^{I_{Pol}} n_{i}\left(\frac{T_{r}}{T}\right)^{t_{i}}\left(\frac{\rho}{\rho_{r}}\right)^{d_{i}} + \sum_{i=1+I_{Pol}}^{I_{Pol}+I_{Exp}} n_{i}\left(\frac{T_{r}}{T}\right)^{t_{i}}\left(\frac{\rho}{\rho_{r}}\right)^{d_{i}} \exp\left(-\gamma_{i}\left(\frac{\rho}{\rho_{r}}\right)^{p_{i}}\right)$$

[1] R. Span, "Multiparameter Equations of State," Springer, Berlin, 2000.

Fitting the Generalized EOS

$$a = a^{o} + a^{r}$$

$$\frac{a^{o}(\rho, T)}{R_{s}T} = c^{II} + c^{I}\left(\frac{T_{r}}{T}\right) + \ln\left(\frac{\rho}{\rho_{r}}\left(\frac{T_{r}}{T}\right)^{c_{0}}\right) + \sum_{i=1}^{I_{Pol}}c_{i}\left(\frac{T_{r}}{T}\right)^{t_{i}}$$

$$\frac{a^{r}(\rho, T)}{R_{s}T} = \sum_{i=1}^{I_{Pol}}n_{i}\left(\frac{T_{r}}{T}\right)^{t_{i}}\left(\frac{\rho}{\rho_{r}}\right)^{d_{i}} + \sum_{i=1+I_{Pol}}^{I_{Pol}+I_{Exp}}n_{i}\left(\frac{T_{r}}{T}\right)^{t_{i}}\left(\frac{\rho}{\rho_{r}}\right)^{d_{i}}\exp\left(-\gamma_{i}\left(\frac{\rho}{\rho_{r}}\right)^{p_{i}}\right)$$

- Start with the best soft sphere fit
- Round density exponents to nearest integer
- Fit leading coefficients and temperature exponents
- Add a single exponential term
 - Systematically try different combinations of the exponents d_i and p_i
 - Examine impact on fit
 - Keep the term that improves the fit most significantly
 - Resume simultaneous fitting, including the new term
- Add one polynomial term to the Helmholtz free energy of the ideal gas
 - To fix minor imperfections in specific heat and sound speed fits

Final Result

$$\frac{a}{R_sT} = s_0 + u_0 \left(\frac{T_m}{T}\right) + ln \left(\frac{\rho}{\rho_m} \left(\frac{T_m}{T}\right)^{\frac{3}{2}}\right) + \sum_{i=1}^5 n_i \left(\frac{T_m}{T}\right)^{t_i} \left(\frac{\rho}{\rho_m}\right)^{d_i} exp\left(-\gamma_i \left(\frac{\rho}{\rho_m}\right)^{p_i}\right)$$

T [K]

T [K]

Status of RELAP5-3D implementation

- New equation of state and transport properties for PbLi have been implemented in RELAP5-3D
- Final verification testing to be performed
- Will be included in new RELAP5-3D version
- Result published:
 - P. W. Humrickhouse and B. J. Merrill, "An equation of state for liquid Pb₈₃Li₁₇," Fusion Engineering and Design **127** (2018) 10-16.

Idaho National Laboratory

The National Nuclear Laboratory

http://inl.gov/relap5 paul.humrickhouse@inl.gov