Ongoing RELAP5-3D-related activities at SCK•CEN

Diego Castelliti
SCK•CEN
diego.castelliti@sckcen.be

IRUG meeting 2018, 3-4 May 2018, Idaho Falls

Contents

MYRRHA plant main features

MYRRHA pre-licensing activities: safety studies

MYRRHA pre-licensing activities: experiments

MYRRHA plant main features – Main purposes

 MYRRHA: Multi-purpose hYbrid Research Reactor for High-tech Applications at SCK•CEN

- Pool-type Accelerator Driven System (ADS) with ability to operate also as critical reactor
- Liquid Lead-Bismuth Eutectic (LBE) as primary coolant

 MYRRHA project recognized as high priority infrastructure for nuclear research in Europe

MYRRHA plant main features – Plant overview

MYRRHA: accelerator driven system (ADS)

MYRRHA plant main features – Fuel pin and fuel assembly

5

- MOX fuel, 30% wt. Pu
- Fuel pin with wire spacer
 - Less vibrations
 - Easier to fabricate and mount
 - Better for small P/D (otherwise too thick)
- Active length: 65 cm

- 127 pins per Fuel Assembly
 - Hexagonal lattice
- Closed structure
 - Wrapper enclosing pin bundle
- Total length: ~2.5 m
- Flow rate: 71.4 kg/s

© SCK•CEN, 2018

MYRRHA plant main features – Core layout

- Smaller core (72 FAs)
- Lower power (75 MW)
- No safety rods required
 - Keff = $0.95 \rightarrow$ improved safety
- High and hard flux in core center → MA transmutation
- Proton source + window required
- High peaking factors → Peaked temperature profiles

- Larger core (108 FAs)
- Higher power (100 MW)
- Safety rods required
- Lower and softer neutron flux in core center
- No external source required
- Lower peaking factors
- Operating experience

6

MYRRHA plant main features – Primary cooling system

Primary system: completely enclosed in primary vessel (pool-type)

- 4 Primary Heat eXchanger (PHX)
- 2 Primary Pumps (PPs)

Upper plenum: 325 °C

Core: 100 MW

Lower plenum: 270 °C

- A. Reactor vessel
- B. Diaphragm
- C. Reactor Cover
- D. Primary Heat Exchanger

7

E. Primary Pump

- F. In-Vessel Fuel Handling
 - Machine
- G. Core Barrel
- H. Reactor core
- Core Restraint System
- Cold plenum separated from hot plenum by Diaphragm
- Above LBE free surface: Nitrogen layer

© SCK•CEN, 2018

MYRRHA plant main features – Primary cooling system

8

Reactor layout

- Vessel
- Cover
- Core barrel and Multi-functional plugs
- Above Core Structure
- Cradle, Core Restraint System, beam line and window target
- Si-doping units, Mo-irradiation units, control rods and safety rods
- Primary Heat Exchangers
- Primary Pumps
- In-Vessel Fuel Handling Machines, Fuel Transfer Devices, Failed Fuel Detection Devices, Extraction Pumps
- Diaphragm and support structure
- Reactor pit, Reactor Vessel
 Auxiliary Cooling System

MYRRHA plant main features – STCS

© SCK • CEN. 2018

MYRRHA plant main features – Operation conditions

Operating conditions

10

- Normal operation → Plant operating in forced circulation
- Power: 110 MW (maximum)
 - 100 MW → core power
 - 10 MW → additional heat sources:
 - In Vessel Storage Tank (IVST)
 - Po decay heat
 - Pump power
 - γ heating
 - Spallation target power

- Accidental conditions → Plant able to remove Decay Heat in passive mode (natural circulation)
- Two systems to accomplish DHR function:
 - DHR-1: STCS operating in passive mode (if required)
 - DHR-2: Reactor Vessel Auxiliary Cooling System (RVACS)

MYRRHA plant main features – Reactor Power Program

 MYRRHA: Material Testing and Demonstrator Reactor → high degree of flexibility required in terms of operational power

- Power program concept:
 - Primary and Secondary mass flow rate constant at any power load
 - SCS pressure and temperature constant at any power load (16 bar, 200 °C)
 - Primary System temperatures and PHX outlet quality varying with power load

High SCS pressures at partial loads avoided!

MYRRHA pre-licensing activities: safety studies

MYRRHA plant main features

MYRRHA pre-licensing activities: safety studies

MYRRHA pre-licensing activities: experiments

MYRRHA pre-licensing activities – RELAP5-3D model

- RELAP5-3D MYRRHA plant model:
 - 2518 volumes, 2590 junctions
 - All cooling systems (primary, secondary, tertiary) simulated
 - Main control systems (Control Rods, secondary pressure) included

MYRRHA pre-licensing activities – RELAP5-3D model

Main steady state results reported:

Parameter	Unit	RELAP5-3D value	Reference value	Error %
Active core mass flow rate	kg/s	7719.3	7711.2	0.10
Total primary system mass flow rate	kg/s	13833.6	13800.0	0.24
Core inlet temperature	°C	266.0	270.0	-1.48
Core average outlet temperature	°C	351.7	360.0	-2.30
Average core temperature difference	°C	85.7	90.0	-4.78
FA friction pressure losses	Pa	196397	200000.0	-1.80
PP head	Pa	311571	300000.0	3.86
SCS first sub-loop mass flow rate	kg/s	45.9	47.0	-2.34
PHX SCS lower head pressure	Pa	1603210.0	1600000.0	0.20
PHX water outlet quality	-	0.3	0.3	~0

- Good agreement between code-calculated values and design values
 - Limited differences due to different LBE physical properties (mainly Cp)
- Maximum clad temperature ~470 °C
- Maximum fuel temperature ~1600 °C (low value due to low linear power ~110 W/cm)

14 ©

MYRRHA pre-licensing activities: safety studies – Transients

 MYRRHA entered pre-licensing phase (contacts with Belgian Safety Authority started)

- Transients simulated using reference MYRRHA RELAP5-3D model
 - Appropriate boundary conditions assumed to represent enveloping conservative cases

MYRRHA pre-licensing activities – LOFF

 Reference envelope LOFF transient: Loss Of Offsite Power with double locked rotor

16

- Unprotected transient: limit reached after ~17 s
- Protected transient: safety criterion well respected

© SCK • CEN. 2018

MYRRHA pre-licensing activities – RIA

- Reactivity insertion caused by several reasons:
 - Water ingress
 - Core compaction
 - Accidental control rod ejection or withdrawal
- MYRRHA official RELAP5-3D model modified:
 - Secondary Cooling System removed
 - Primary System reduced to core region
 - Core split in 18 channels: different fuel batch → different gap conductance and NK feedbacks
- Conservative case in terms of pin conductivity, thermal expansion and reactivity feedbacks:
 - Maximum step-type reactivity insertion: 211 pcm
 - Maximum slope-type reactivity insertion: 109 pcm/s

17

MYRRHA pre-licensing activities: experiments

MYRRHA plant main features

MYRRHA pre-licensing activities: safety studies

MYRRHA pre-licensing activities: experiments

MYRRHA pre-licensing activities – HEXACOM

 Heat EXchanger At COMplot (HEXACOM): two-phase pressurized water loop simulating MYRRHA PHX and SCS

Maximum power: 100 kW

Design pressure: 25 bar

- Main objectives:
 - Investigate PHX configurations heat transfer performances
 - Develop and validate HTC correlations for HX bundles in LBE
 - Improve knowledge on two-phase phenomena at p < 20 bar</p>
 - Obtain experimental databases for model development
 - Study two-phase phenomena in support of MYRRHA design

Facility commission foreseen for end 2018

MYRRHA pre-licensing activities – HEXACOM

HEXACOM RELAP5 model for pre-tests

Full power: as expected

 Partial loads: instabilities in vertical line PIPE 138

> Flow regime transitions: bubblyslug and slug-annular

Instabilities noted in MYRRHA model as well!

- $0 \rightarrow 40\%$, $70\% \rightarrow 100\%$: stable
- 40% → 70%: unstable (slug ← → annular)
- ~5%: unstable (bubbly ←→ slug)

20

© SCK•CEN, 2018

MYRRHA pre-licensing activities — E-SCAPE

 European SCAled Pool Experiment (E-SCAPE): thermal hydraulic 1/6-scale model of the MYRRHA primary system

Main objective: represent 3-D temperature and velocity fields (convection patterns,

flow mixing, stratification)

Power: 10 kW

- Two main working conditions:
 - Forced circulation
 - Natural circulation
 - Correct temperature increase!
- Test matrix:
 - Full/reduced power operation
 - Single/multiple PHX or pump failure
- First steady-state tests recently finalized!

MYRRHA pre-licensing activities – E-SCAPE

- E-SCAPE RELAP5-3D model for pre-tests
- Model built to pre-test system performances and data posttest
 - Initially developed as RELAP5-3D stand-alone
 - Coupling with ANSYS-FLUENT
 Two CFD domains included
- Transient tests post-tests to be finalized by April 2019 (EU H2020-MYRTE project)

 Loss Of Forced Flow pre-test simulation (MYRRHA vs. E-SCAPE)

Conclusions

- MYRRHA plant currently under development at SCK•CEN
 - Pre-licensing contact with Belgian Safety Authority started
 - Several safety studies delivered
 - Ongoing R&D program to better issue remaining open items
- RELAP5-3D: tool selected for design support and safety analysis
 - MYRRHA reference model
 - Pre- and post-test studies on experimental facilities

 Contribution to code validation:

23

- Lead-Bismuth Eutectic as primary coolant
- Pool-type reactors 3-D velocity and temperature fields
- Low pressure (< 16 bar) applications</p>

© SCK*(