Multi-Physics Best Estimate Plus Uncertainty (MP-BEPU) Analysis Framework LOTUS and RELAP5-3D

Hongbin Zhang Idaho National Laboratory

> IRUG Meeting 5/3/2018

- The existing NPP fleet is facing economic challenges due to:
 - Low natural gas price
 - Rapid deployment of renewable energy sources
- Additionally, the existing NPP fleet is facing regulatory challenges:
 - 。10 CFR 50.46c
- Reducing fuel cost is one area that contributes to the improved economic viability and enhanced safety of the existing fleet
 - Accident tolerant fuel
 - Higher burnup of the fuel
 - Optimized fuel and loading pattern design
 - Load following and flexible operating strategies

Multi-physics, multi-scale analysis of core/fuel/systems in the context of bestestimate plus uncertainty (BEPU) methodology is desired.

MP-BEPU Framework is NOT designed is compete with multi-physics framework MOOSE or VERA

LOTUS-B (LOTUS with Baseline Tools) Application on a Generic PWR Model Based on STP (South Texas Project) plant

Plant Characteristics: 4-Loop PWR 3853 MWth 14 Feet Fuel

Tools: PHISICS for Core Design Automation FRAPCON for fuels performance RELAP5-3D for Systems Analysis LOTUS for Uncertainty Quantification Scenario: Double ended guillotine break

LWRS LIGHT WATER SUSTAINABILITY Proposed new rulemaking in 10 CFR 50.46c

- NRC proposed 50.46c rule introduces new (more restrictive) performancebased requirements.
- Potential Impact:
 - Every fuel rod in the core needs to be analyzed in LOCA analyses.
 - This may require reanalysis of all existing US fleet LOCA bases.

Pre-Transient Hydrogen Content (wppm)

An acceptable analytical limit on peak cladding temperature and integral time at temperature (credit of U.S. NRC)

PWR Core Design – Generic Design Based on STP (Credit to Aaron Epiney)

- Coupled RELAP5/PHISICS
 - 1 TH channel per assembly
 - Boundary conditions at
 - lower and upper plena
- Developed PWR core similar to STP core
 - 。 3.8 GWth
 - 14 feet Westinghouse core
- Design Criteria
 - 18 month cycle
 - High energy/low leakage
 - Equilibrium assumed after 8 cycles
 - Enrichment 4.2%-4.6 %
 - Fresh/1/2/burned map from a similar PWR

IFBA distribution obtained by optimization process

Fuels/Clad Performance (Baseline)

Fuel mechanics

- RELAP5-3D includes *rupture model* and *ballooning model*
- But we need detailed analysis of fuel rods' behaviors such as the fission gas released, rod internal pressure, and fuel-cladding mechanical interaction, cladding H content etc., FRAPCON
- The power history data is automatically retrieved by LOTUS from the core design results going into a FRAPCON input

Power history for the hot rod

Cladding hydrogen content vs. rod average burn-up (all assemblies)

RELAP5 nodalisation for a generic LIGHT WATER four-loop PWR based on STP SUSTAINABILITY

A RELAP5 model is built for a generic PWR based on the STP NPP:

REACTOR

Reactor Vessel 0

LWRS

- Downcomer
- **Bypass**
- Lower/Upper plena
- Core
- Upper head
- Reactor coolant system 0
 - 4 primary loops
- ECCS 0
 - Low pressure injection (LPI) •
 - High pressure injection (HPI) •

LIGHT WATER REACTOR SUSTAINABILITY TABLE OF Uncertain Parameters

LWRS.

Parameter	Nominal	Range (+/-)	Distribution	FRAPCON	RELAP5-3D
Fuel Radius	0.40956 cm	0.001 cm	Truncated Normal	Х	Х
Clad Outer Radius	0.47498 cm	0.002 cm	Truncated Normal	Х	Х
Clad Thickness	0.05715 cm	0.002 cm	Truncated Normal	Х	Х
Plenum Fill Gas Pressure	3.0 MPa	0.08 MPa	Truncated Normal	Х	*
Percent Theoretical Density	94.5%	1.6%	Truncated Normal	Х	Х
Fuel Thermal Conductivity	-	10%	Truncated Normal	Х	Х
Core Power	3.85 GW	2%	Truncated Normal	Х	Х
Direct Moderator Heating	0.02	10%	Truncated Normal	Х	*
Decay Heat Multiplier	1	0.06	Uniform		Х
Accumulator Pressure	606 psi	10%	Truncated Normal		Х
Accumulator Liquid Temperature	126 °F	25	Uniform		Х
Accumulator Liquid Volume	1250 ft ³	8	Uniform		Х
Sub-Cooled Counter Flow Multiplier (Pump Side)	1	0.2	Uniform		Х
Two-Phase Counter Flow Multiplier (Pump Side)	1	0.2	Uniform		Х
Super-Heated Counter Flow Multiplier (Pump Side)	1	0.2	Uniform		Х
Sub-Cooled Counter Flow Multiplier (Vessel Side)	1	0.2	Uniform		Х
Two-Phase Counter Flow Multiplier (Vessel Side)	1	0.2	Uniform		Х
Two-Phase Counter Flow Multiplier (Vessel Side)	1	0.2	Uniform		Х
Turbulence Heat Transfer Multiplier	1	0.3	Uniform		Х
Nucleate Boiling Heat Transfer Multiplier	1	0.3	Uniform		Х
Critical Heat Flux Multiplier	1	0.3	Uniform		Х
Transition Boiling Heat Transfer Multiplier	1	0.3	Uniform		Х
Film Boiling Heat Transfer Multiplier	1	0.3	Uniform		Х
Condensation Heat Transfer Multiplier	1	0.3	Uniform		Х
Natural Convection Heat Transfer Multiplier	1	0.3	Uniform		Х
Laminar Heat Transfer Multiplier	1	0.3	Uniform		Х

LURS LIGHT WATER REACTOR SUSTAINABILITY

LIGHT WATER REACTOR SUSTAINABILITY Table of Uncertain Parameters (Continues)

Parameter	Nominal	Range (+/-)	Distribution	FRAPCON	RELAP5-3D
Fuel Enrichment	2.6/4.2/4.6	0.003%	Truncated Normal	Х	
Fuel Roughness	2.0 μm	0.33333 μm	Truncated Normal	Х	
Clad Roughness	1.0 μm	0.2 μm	Truncated Normal	Х	
Fuel Thermal Expansion	-	15%	Truncated Normal	Х	
Fission Gas Release Biasing	-	+200%/-67%	Truncated Normal	Х	
Fuel Swelling	-	20%	Truncated Normal	Х	
Clad Creep	-	30%	Truncated Normal	Х	
Clad Axial Growth	-	50%	Truncated Normal	Х	
Clad Oxidation	-	40%	Truncated Normal	Х	
CladH2Pickup	-	80 ppm	Truncated Normal	Х	
Outlet Pressure	2275 psi	2%	Truncated Normal	Х	
Inlet Mass Flux	2605453 lb/hr-ft ²	2%	Truncated Normal	Х	
Fuel Enrichment	2.6/4.2/4.6	0.003%	Truncated Normal	Х	
Fuel Roughness	2.0 μm	0.33333 μm	Truncated Normal	Х	
Clad Roughness	1.0 μm	0.2 μm	Truncated Normal	Х	

LWRS LIGHT WATER REACTOR SUSTAINABILITY PCT & ECR Distribution for the Limiting Case at 400 Days

LIGHT WATER REACTOR SUSTAINABILITY Limiting Cases

LWRS

ECR vs Cladding Hydrogen Content and Burnup for Limiting Cases

Conclusions

- UQ studies within a multiphysics allow for appropriate, less conservative estimates of safety metrics
- LOTUS is designed as a "Plug-and-Play" environment aiming at integrating computer codes in core design, fuels performance and systems analysis to enable BEPU analysis
- UQ of PHISICS/FRAPCON/RELAP5-3D has been demonstrated with a generic PWR model based on STP
- Future work includes integration of advanced computer codes being developed such as VERA-CS, MAMMOTH, BISON and RELAP7
- LOTUS also built in both low order and high order sensitivity analysis techniques to provide superior elucidation of relations between input and output uncertainties.

Sustaining National Nuclear Assets

http://lwrs.inl.gov