Measuring Risk Importance in a Dynamic PRA Framework

D. Mandelli, Z. Ma, C. Parisi, A. Alfonsi, C. Smith

diego.mandelli@inl.gov

JOD.

IRUG Meeting- Idaho Falls, May 2018

Work Summary

- Risk Importance Measures (RIMs) in PRA
 - Fusel-Vessely, Risk Achievement Worth
 - Applied to Minimal Cut Sets
- Extension of classical RIMs for Dynamic PRA data
 - Large number of simulated accident scenarios
- Application to PWR LB-LOCA
 - Classical vs. Dynamic PRA

Classic RIMs from ET/FT Data

- All classic RIMs are calculated by determining:
 - R_0 : nominal Core Damage Probability (CDP)
 - R_i^- : CDP for basic event *i* assumed to be perfectly reliable
 - R_i^+ : CDP for basic event *i* assumed failed
- RIMs:
 - Risk Achievement Worth (RAW): $RAW_i = \frac{R_i^+}{R}$
 - Risk Reduction Worth (RRW):

$$RRW_i = \frac{R_0^{-1}}{R_i^{-1}}$$

– Birnbaum (B): $B_i = R_i^+ - R_i^-$

- Fusel-Vessely (FV): $FV_i = \frac{R_0 - R_i^-}{R_0}$

- Dynamic PRA:
 - Large number of simulated accident scenarios
 - Timing/sequencing of events is dictated by:
 - System control logic
 - Sampled parameters
 - Sampled parameters are analogous of Basic Events

Possible approaches:

- 1. Perform an analysis for R_o and for each basic event *i* determine R_i^- and R_i^+
 - For *N* basic events, 2 *N* + 1 analyses are required
 - Tremendously computationally expensive
- 2. Determine R_i^{-} and R_i^{+} from the simulations generated to calculate R_o

- How can $R_0 R_i^+ R_i^-$ be determined from simulation-based data sets?
- Define for each basic event *i* (sampled parameter):
 - I_i^- region where basic event *i* is assumed to be perfectly reliable
 - I_i^+ region where basic event *i* is assumed failed

e.g., Grid recovery time

e.g., EDG failure time ⁵

• Determine $R_0 R_i^+ R_i^-$ for each basic event *i* (Monte-Carlo case):

• Note: special attention needs to be given to the sampling strategy

- Testing:
 - Several analytical tests have been developed for different configurations
 - Parallel/series
 - Stand-by
 - K out of N
 - Initial comparison with SAPHIRE on more advanced cases has been started
 - Perfect agreement within statistical error

Application

- Test case:
 - 3-loop PWR system
 - Large break LOCA (LB-LOCA)
- Systems considered:
 - Accumulators (ACCs)
 - Low Pressure Injection System (LPI)
 - Low Pressure Recirculation (LPR)
- Scope of the analysis:
 - Validation step
 - Measure differences between Classical and Dynamic PRA analyses

Results

- CD probability:
 - Dynamic PRA (RAVEN-RELAP5): 8.24 E-3
 - Classical PRA (SAPHIRE): 8.13 E-3
- Event sequence probabilities:

Results

IE	ACC	LPI	LPR	ID	Out	Branch Probability	
						SAPHIRE	RAVEN
				1	OK	0.99187	0.99176
1				2	CD	7.27 E-3	7.365 E-3
				3	CD	8.12 E-4	8.744 E-4
				4	ОК		5.712 E-10
				5	CD	CD 4.80 E-5	4.242 E-12
				6	CD		5.036 E-13

Results

- RIMs:
 - Drastic decrease for basic events associated to ACC
 - RIM analysis considered a small subset of the simulated data
- What about the rest of the data?
 - Measure safety margin (SM):

SM = 2200 - PCT

- Characterize the pdf of SM
 - mean, std. dev.

Summary

- Classical RIMs can be generated from simulation based data
- Rationale: classical and dynamic PRA can coexist
 - Reduce ET/FT conservatisms
 - Employs simulation-based success criteria
 - Measure safety margins
- Hybrid PRA:
 - Start from classical PRA model
 - Validate outcome and probability of all ET branches
 - measure safety margins
 - Perform UQ on simulation models for borderline ET branches
 - Introduce time-dependent elements (e.g. recovery) for specific event sequences