Information Systems Laboratories, Inc.

Status of Recent Nodal Kinetics Advances in RELAP5-3D

2018 International RELAP5 Users Group Meeting

Idaho Falls, Idaho

May 3 - 4, 2018

Doug Barber Information Systems Laboratories, Inc.

Presentation Outline

- History of Nodal Kinetics in RELAP5-3D
- Recent RELAP5-3D Nodal Kinetics Advances
 - Merged Data Structures for LSOR and Krylov
 - Merged Non-linear Solvers
 - Migrated Functionality from Krylov to LSOR
 - LSOR / Krylov Solver Switching Logic
- On-going Work
 - Sparse Direct Linear Solver

- The nodal kinetics model in RELAP5-3D originated with the NESTLE code developed by Paul Turinsky and colleagues at North Carolina State University (c.1993).
 - 2 or 4 group neutron diffusion equation
 - Cartesian or hexagonal geometry
 - 3-, 2-, or 1-dimensional models available
 - Symmetry options:
 - quarter, half, and full for Cartesian geometry
 - sixth, third, and full for hexagonal geometry
 - Boundary condition options:
 - Zero flux
 - Non-reentrant current
 - Reflective
 - Cyclic

- RELAP5-3D with NESTLE (cont'd)
 - Line Successive Over-Relaxation (LSOR) for linear solution
 - Higher-order non-linear solution using NEM
 - Fully implicit delayed neutron precursor equation
 - Thermal-hydraulic feedback incorporated into polynomial-based macroscopic cross sections

- 1996: PARCS Krylov solver based on BiCGStab added to the code.
 - Driven by need for high-fidelity, real-time simulation
 - Included shared-memory parallel programming
 - Through University Research Consortium with Purdue and NCSU
 - Jerry Judd, Tom Downar, Han Gyu Joo, Doug Barber
 - Initially for Cartesian, 2-group only
- 1997: Extended to hexagonal geometry
- 1998 2006: Minimal modifications to the NK solver in RELAP5-3D

- 2007: Addition of SS Krylov solver
- 2008: TPEN non-linear solver for hexagonal geometry Extension to 4 energy groups Reactivity feedback edits
- 2009: Control rod decusping
 Implement GMRES solver
- 2011: Modernize nodal kinetics data structure
- 2012: Asynchronous time advancement
- 2013: Face-dependent albedos Composition-dependent neutron velocity Automatic time step control for NK
- 2014: Shared-memory parallelization restored

All upgrades from 2007-2014 funded by Bettis

History of Nodal Kinetics (In Process)

- 2017: Merged Data Structures for LSOR and Krylov
- 2018 [*Completed*]:

Merged Non-linear Solvers Migrated Functionality from Krylov to LSOR LSOR / Krylov Solver Switching Logic

 2018 [In Process]: Sparse Direct Linear Solver

Current work funded by Bettis

Merged Data Structures

- <u>Purpose</u>: Merge repeated data structures used by LSOR and Krylov solvers.
 - Facilitate merging of NEM solvers and other functionality
 - Facilitate solver switching logic
 - Krylov-to-LSOR and vice-versa
 - Iterative-to-direct
 - May result in some memory inefficiency for the LSOR solver
- <u>Status</u>: Completed

Merged Data Structures

- Data Structures Merged:
 - Cross section arrays
 - Linear system coupling coefficient arrays
 - Solution arrays: flux, fission source, etc.
 - Neutron kinetics data: beta, lamda, etc.
 - Source terms
 - Geometry data
 - Boundary condition arrays
 - NEM arrays: nodal current, expansion terms, leakage terms

Merged Data Structures

- **Regression** testing produced mostly null differences
 - LSOR cases only had numerical differences due to order of operations changes
 - Flux errors on the order of 1.0E-08%
 - Some Krylov cases had significant differences
 - Maximum flux error: -4.068E-02%
 - Due to a bug that was uncovered and fixed during the merge process
- **Restart / Backup** testing produced null differences

Merged Non-linear Solvers

- <u>Purpose</u>: Use a consistent NEM solver for both LSOR and Krylov solvers
 - Allows seamless switching between LSOR and Krylov
 - Will facilitate switching to/from a direct solution
 - Results in some order of operation changes for both solvers
- <u>Status</u>: Completed

Merged Non-linear Solvers

LSOR	Krylov	Description
Cartesian Geometry		
nonnemc.F	nonnem.F	Driver for NEM
nonplmc.F	nonplm.F	Calculate leakage and expansion coefficients
nonnetc.F	nonnet.F	Calculate Net Currents
nononec.F	nonone.F	Solve One-node Problems
nontwoc.F	nontwo.F	Solve Two-node Problems
Hexagonal Geometry		
nonnemh.F	nonnemkh.F	Driver for NEM
nonplmh.F	nonplmkh.F	Calculate leakage and expansion coefficients
nonneth.F	nonnetkh.F	Calculate Net Currents
nononeh.F	nononekh.F	Solve One-node Problems
nontwoh.F	nontwokh.F	Solve Two-node Problems

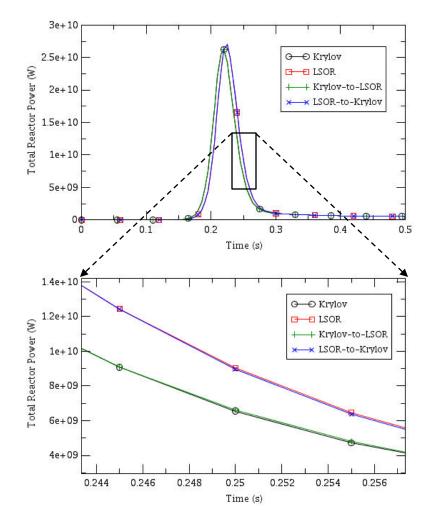
Merged Non-linear Solvers

- **Regression** testing produced mostly null differences
 - LSOR and Krylov cases only had numerical differences due to order of operations changes
 - Flux errors on the order of 1.0E-06%
- Restart / Backup testing produced null differences

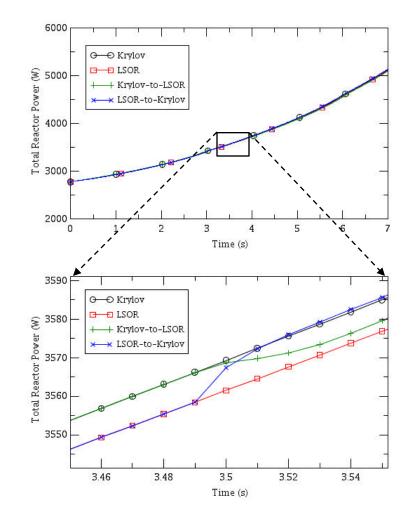
Migrated Functionality

- <u>Purpose</u>: Extend Krylov-only functionality to LSOR
 - TPEN solver
 - Reactivity feedback edits
 - Control rod decusping
 - Albedo boundary conditions, including face-dependent (In Process)
- <u>Status</u>: Completed, except albedo BCs

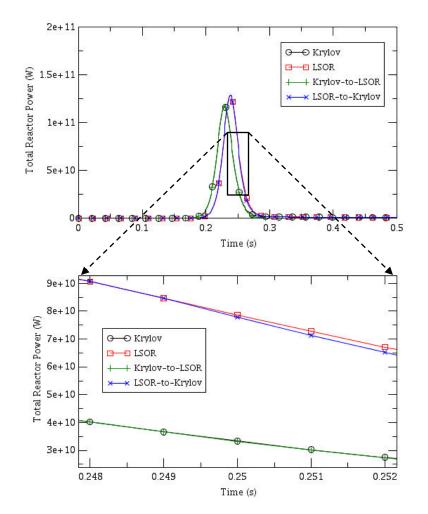
Migrated Functionality


- TPEN solver
 - Card 30000010, Word 16 can be selected for both solvers
 - 0 NEM; 1 TPEN
- Reactivity feedback edits
 - Card 30000010, Word 17 can be selected for both solvers
 - 0 no edits; 1 total reactivity; 2 all feedback edits
- Control rod decusping
 - Card 30000010, Word 18 can be selected for both solvers
 - 0 no decusping; 1 homogeneous cross sections w/ intranode flux weighting; 2 – axial discontinuity factors used
- Albedo boundary conditions
 - Card 30000021 for group-wise albedos
 - Card 37IIJJKKF for face-dependent albedos

- <u>Purpose</u>: Provide user control of which solver to use during the calculation
 - Utilizes the kinetics time step cards (2200-2299)
 - Allow the solver to switch between LSOR and Krylov
 - Steady-state
 - Transient
 - Allow switching for both hexagonal and Cartesian
 - Preserve CMFD / NEM / TPEN selection for both solvers
 - Provide for exact restarts, even when restarting during a solver switch
 - Solver selection included in minor edits
- <u>Status</u>: Completed


- Modification to 2201-2299 cards Add Word 4:
- W4(I) Nodal kinetics solver selection. A value of 0 indicates that the LSOR (line successive over-relaxation) solution algorithm is to be used. A value of 1 indicates that the Krylov solution algorithm is to be used. The value input here will overwrite the solver selection from Card 30000003, Word 17.
 - Minor edit / plot variable added: rkosol
 - If rkosol is 0, then LSOR is being used
 - If rkosol is 1, then Krylov is being used

- CMFD / NEM / TPEN selection on the 30000003 and 30000010 cards is preserved
 - LSOR to Krylov:
 - NEM update frequency for Krylov set to LSOR value if greater than 0
 - If NEM frequency for LSOR is 0 (CMFD-only), then the frequency for Krylov is also set to 0
 - TPEN selection is preserved when switching
 - Krylov to LSOR:
 - NEM update frequency for LSOR set to Krylov value if greater than 0
 - Ensure that frequency is greater than the Chebyshev extrapolation
 - If NEM frequency for Krylov is 0 (CMFD-only), then the frequency for LSOR is also set to 0
 - TPEN selection is preserved when switching


• NEACRP C1 – Solver Switch at 0.25 sec

• Rod Decusping Test – Solver Switch at 3.5 sec

• Hexagonal TPEN Test – Solver Switch at 0.25 sec

On-going Work

- Sparse Direct Linear Solver
 - Investigate available packages
 - SuperLU (serial, unsymmetric)
 - SPARSPAK (serial, symmetric positive definite (SPD))
 - PARDISO (shared memory parallel, symmetric non-zero)
 - Cholesky (shared memory parallel, SPD, banded)
 - SuperLU_MT (shared memory parallel, unsymmetric)
 - With and without preconditioning
 - Prepare Software Requirements Specification
 - Implement / Document selected direct solver
- Verification and Validation
 - Utilizing the NUPAC Test Framework from Bettis
 - Using quantified metrics for testing
- Integrated Nodal Kinetics Testing

- Merged Data Structures for LSOR and Krylov
 - Code modifications completed August 2017
 - Testing completed March 2018
- Merged Non-linear Solvers
 Migrated Functionality from Krylov to LSOR
 LSOR / Krylov Solver Switching Logic
 - Code modifications (Rev. 0) completed December 2017
 - Code modifications (Rev. 1) completed April 2018
 - Testing completed April 2018
- Sparse Direct Linear Solver
 - Began April 2018
 - Expected completion (including testing) December 2018