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Classical and Dynamic PRA

« Classical PRA: based on static Boolean structures
— Event-Trees (ET): inductively model accident progression

— Fault-Trees (FT): deductively model system failure
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« Dynamic PRA: simulation-based methods that couple:
— System simulator codes (e.g. RELAP5-3D)
— Stochastic tools (e.g., RAVEN)
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Classical and Dynamic PRA

* Issues related to the Dynamic PRA analysis:
— Computationally expensive
— Some components of the system might not require a simulation model

— Implementation of control logic systems in a system simulator might be
challenging
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Objectives of the Integration

* Integration of Classical models into a Dynamic PRA

— Rationale: some systems/components might not require a simulation
model

» Could be modeled by employing a Classical PRA model (e.g., a FT)

— Objective: integrate Classical PRA models into a Dynamic PRA (“Hybrid”
PRA)

- ETs

* FTs

* Reliability Block Diagrams (RBDs) (e ——
+ Markov models
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Integration

* In Dynamic PRA time is explicitly considered
+ Most Classical PRA models are based on Boolean logic structures

- Each Dynamic PRA model is characterized by a precise set of input and output
variables

* Approach:
1. Define input and output variables for each Classical PRA model
Model Input Variables Output Variables
ET Branching conditions | Sequence, Outcome
FT Basic Events Top Event
Markov model | Initial state, End time Final state
RBD Block statuses System status

2. Extend Classical PRA models to deal with time dependent data; e.g.,
pump failure time instead of pump failure

3. Link models (e.g., FT and RBD with RELAPS) together
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Extending FT to Time Domain
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- Challenge: Basic Events of a FT can be different in nature (Boolean or time value)
- Gate values are consequently different in nature depending on the type of value

of the Basic Event

 Example: FT AND gate

be 1
. False
False

Boolean Time dep. Boolean and time dep.

bes out be1  bes out bey bes out

False | False t1  tg | max(tq,ta) False t, | False

True | False True to to
True False | False True

True | True rue be1

be2
False
t b Time

+ Solution: An algorithm has been developed in RAVEN which:
— Given a generic FT structure
— Computes the outcome of the FT Top Event for a generic set of values of the

Basic Events
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Extending RBD and Markov Models to Time Domain

« RBD: a similar algorithm has been developed for RBD

» FW-P1 V1 » SG1
CST FW-P2 » FW-H V2 SG2
FW-P3 V3 SG3

SG1: Top Event = (FW-P1 and FW-P2 and FW-P3) or FW-H or V1

* Markov Models:
— Input variables: Initial State, Transition Matrix, End Time
— Output variable: State at End Time
— Procedure: Perform transitions among states until End Time is reached
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Linking Models: RAVEN Ensemble Model

- Multiple “models” can be assembled together and treated as a single one

Models can be completely heterogeneous:
— Codes
— External models
— Reduced Order Models

RAVEN acts as a hub for the information exchange

Information passing between “models” could be:
— Point values
— Time Series

Example:
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Application

» Test case:
— 3-loop PWR system
— Large break LOCA (LB-LOCA)
+ 67, 87, 10" and double-ended guillotine (2A)

« Systems considered:
— Accumulators (ACCs)
— Low Pressure Injection System (LPI)
— Low Pressure Recirculation (LPR)

» Scope of the analysis:
— Show how FTs can be linked to RELAPS
— Measure differences between Classical and Dynamic PRA
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Classical And Dynamic PRA:
Comparison Methodology

Classical PRA Dynamic PRA
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LB-LOCA Dynamic PRA
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Results

+ Classical and Dynamic PRA results agree for the first three branches

- Disagreement on Branch 4:
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* ET needs to be re-structured 0 g I U
— Added new ET branching condition: HPI
— Expanded part of ET after failure of the ACC system
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Re-structured ET

» Analysis focuses on OK branches: determining safety margins
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Conclusions

+ We have shown how Classical PRA models can be linked to RELAP5-3D by
employing RAVEN

— Application areas: U.Q. and PRA

* PRA applications:
— Validation of existing PRAs
— Integration of simulation-based data into existing PRA
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