Linking Classical PRA Models to a Dynamic PRA

D. Mandelli, C. Wang, C. Parisi, D. Maljovec, A. Alfonsi, Z. Ma and C. Smith

diego.mandelli@inl.gov

.dov

IRUG Meeting- Idaho Falls, May 2018

Classical and Dynamic PRA

- Classical PRA: based on static Boolean structures
 - Event-Trees (ET): inductively model accident progression
 - Fault-Trees (FT): deductively model system failure

- Dynamic PRA: simulation-based methods that couple:
 - System simulator codes (e.g. RELAP5-3D)
 - Stochastic tools (e.g., RAVEN)

Classical and Dynamic PRA

- Issues related to the Dynamic PRA analysis:
 - Computationally expensive
 - Some components of the system might not require a simulation model
 - Implementation of control logic systems in a system simulator might be challenging

Objectives of the Integration

- Integration of Classical models into a Dynamic PRA
 - Rationale: some systems/components might not require a simulation model
 - Could be modeled by employing a Classical PRA model (e.g., a FT)
 - Objective: integrate Classical PRA models into a Dynamic PRA ("Hybrid" PRA)
 - ETs
 - FTs
 - Reliability Block Diagrams (RBDs)
 - Markov models

Integration

- In Dynamic PRA time is explicitly considered
- Most Classical PRA models are based on Boolean logic structures
- Each Dynamic PRA model is characterized by a precise set of input and output variables

• Approach:

1. Define input and output variables for each Classical PRA model

Model	Input Variables	Output Variables
ET	Branching conditions	Sequence, Outcome
\mathbf{FT}	Basic Events	Top Event
Markov model	Initial state, End time	Final state
RBD	Block statuses	System status

- 2. Extend Classical PRA models to deal with time dependent data; e.g., pump failure time instead of pump failure
- 3. Link models (e.g., FT and RBD with RELAP5) together

Extending FT to Time Domain

- Challenge: Basic Events of a FT can be different in nature (Boolean or time value)
- Gate values are consequently different in nature depending on the type of value of the Basic Event
- Example: FT AND gate

- Solution: An algorithm has been developed in RAVEN which:
 - Given a generic FT structure
 - Computes the outcome of the FT Top Event for a generic set of values of the Basic Events

Extending RBD and Markov Models to Time Domain

• RBD: a similar algorithm has been developed for RBD

SG1: Top Event = (FW-P1 and FW-P2 and FW-P3) or FW-H or V1

• Markov Models:

- Input variables: Initial State, Transition Matrix, End Time
- Output variable: State at End Time
- Procedure: Perform transitions among states until End Time is reached

Linking Models: RAVEN Ensemble Model

- Multiple "models" can be assembled together and treated as a single one
- Models can be completely heterogeneous:
 - Codes
 - External models
 - Reduced Order Models
- RAVEN acts as a hub for the information exchange
- Information passing between "models" could be:
 - Point values
 - Time Series
- Example:

$$\overline{x}_{1} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} - \text{Model 1} \rightarrow \overline{y}_{1} = \begin{pmatrix} \Theta \\ \Sigma \end{pmatrix} - \text{Model 2} \rightarrow \overline{y}_{2} = \begin{pmatrix} \Phi \\ \Pi \end{pmatrix}$$
$$\xrightarrow{\overline{x}_{2}} = \begin{pmatrix} \Theta \\ \delta \end{pmatrix} - \text{Model 2} \rightarrow \overline{y}_{2} = \begin{pmatrix} \Phi \\ \Pi \end{pmatrix}$$
$$\xrightarrow{\overline{x}_{3}} = \begin{pmatrix} \Theta \\ \mu \end{pmatrix} - \text{Model 3} \rightarrow \overline{y}_{3} = \begin{pmatrix} \Psi \\ \Gamma \end{pmatrix}$$

Application

- Test case:
 - 3-loop PWR system
 - Large break LOCA (LB-LOCA)
 - 6", 8", 10" and double-ended guillotine (2A)
- Systems considered:
 - Accumulators (ACCs)
 - Low Pressure Injection System (LPI)
 - Low Pressure Recirculation (LPR)
- Scope of the analysis:
 - Show how FTs can be linked to RELAP5
 - Measure differences between Classical and Dynamic PRA

Classical And Dynamic PRA: Comparison Methodology

LB-LOCA Dynamic PRA

Results

- Classical and Dynamic PRA results agree for the first three branches
- Disagreement on Branch 4:

0.2

2

time [s]

- ET needs to be re-structured
 - Added new ET branching condition: HPI
 - Expanded part of ET after failure of the ACC system

leading to OK

5 1e3

Re-structured ET

Analysis focuses on OK branches: determining safety margins

Branch	6"	8"	10"	2A"
1	[620, 750]	[620, 790]	$[615,\!620]$	[1045, 1050]
4	[750, 970]	[770, 860]	[710, 780]	[1050, 1260]
7	$[620,\!630]$	$[620,\!650]$	$[615,\!620]$	$[1045,\!1050]$
10	[910, 970]	[820, 890]	[730, 820]	[1150, 1270]

Conclusions

- We have shown how Classical PRA models can be linked to RELAP5-3D by employing RAVEN
 - Application areas: U.Q. and PRA
- PRA applications:
 - Validation of existing PRAs
 - Integration of simulation-based data into existing PRA