

Development of Quantitative Verification Capabilities for use with RELAP5-3D and R5EXEC

F.X. Buschman

The Naval Nuclear Laboratory is operated for the U.S. Department of Energy by Fluor Marine Propulsion, LLC, a wholly owned subsidiary of Fluor Corporation.

Outline

- Introduction
- Coverage
- Automated Verification
- Quantitative Pass/Fail Testing
- Quantitative Verification of Coupling
- Conclusions

Introduction

- Development of code systems requires verification techniques
 - Should ensure proper implementation of numerical methods as well as models and correlations
- Verification process should independently verify these features with each release
 - Should not rely on regression comparisons or "Golden" files
 - Should include the use of quantitative pass/fail metrics
- Process should be automated
 - Reduce resources required to release code versions
 - Should include documentation of verification results
- NNL has developed an automated quantitative verification suite
 - Used with NUPAC and HYDRA in house versions of RELAP5-3D and R5EXEC

Coverage

- Coverage matrix is integral to a comprehensive verification suite
- Identifies which verification problems exercise which code features and models
 - Identify which problems and features are included in restart testing
- Can be used for multiple functions
 - Demonstrates which features and models are testing in the verification suite
 - Identifies all of the problems that use each feature or model
- Matrix can be generated manually or automatically

Automated Verification

- To be effective a verification process needs to be used
 - Easy to use
 - Fast running
 - Automated
- NUPAC/HYDRA verification is built around "make"
 - Automatically perform parallel operations without special setup
 - Built-in handling of targets and dependencies
 - Allows for staging of executions
 - Allows for fully regressive processing
 - Widely available
 - Allows an easily extensible verification platform
 - HYDRA verification is a sub-set of NUPAC verification suite
 - Separate target within the Makefile

Automated Verification

- Verification suite identifies simulation failures
 - Message to the user that no failures are detected or which cases have failed
 - Includes failure of post-processing routines
- Automatically identify failures in quantitative testing
- Automation is extended to the generation of documentation

NO VERIFICATION FULL BACKUP FAILURES DETECTED

NO VERIFICATION HYDRO BACKUP FAILURES DETECTED

NO VERIFICATION FAILURES DETECTED

NO VERIFICATION GO/NOGO FAILURES DETECTED

NO VERIFICATION RESTART DIFFERENCES DETECTED

NO VERIFICATION RESTART OF RESTART FAILURES DETECTED

Quantitative Pass/Fail Testing

Verification of code correlations

- e.g. Fiction factor correlation and frictional pressure drop
- Independent calculations are performed
 - $f\left(Re, \frac{\epsilon}{D}\right)$
 - Using conditions from the model (u, ρ, μ)
- Compare independent calculation to code results

Attribute	Problem	Limit	Value	Pass/Fail	Comments
Zigrang-Sylvester	fric_fac	1.000000e-03	1.224123e-04	Pass	Zigrang-Sylvester Correlation
Option1	fric_fac	1.000000e-03	1.200681e-04	Pass	NUPAC option 1 correlation
Option2	fric_fac	1.000000e-03	2.683179e-05	Pass	NUPAC option 2 correlation
Option3	fric_fac	1.000000e-03	1.949757e-05	Pass	NUPAC option 3 correlation
Design	fric_fac	1.000000e-03	1.242263e-04	Pass	Design Factor
FricDp	fric_fac	1.000000e-01	1.399884e-04	Pass	Frictional Pressure Drop
K re	fric_fac	1.000000e-06	4.730701e-07	Pass	Reynolds Number Dependent K-factor
Seider-Tate novisc	heatd_wall 1	1.000000e-01	0.000000e+00	Pass	Seider-Tate no viscosity, heated wall correc-
					tion factor
Seider-Tate visc	heatd_wall	1.000000e-01	0.000000e+00	Pass	Seider-Tate w/ viscosity, heated wall correc-
					tion factor
Option1	heatd_wall	1.000000e-01	0.000000e+00	Pass	NUPAC Option1, heated wall correction fac-
					tor

Explicit Coupling

Attribute	Problem	Limit	Value	Pass/Fail	Comments
coupled volume	cpl_pvmcs	1.000000e-06	0.000000e+00	Pass.	Explicit parallel synchronous coupling volume and junction quantities
coupled junction	cpl_pvmeda	1.000000e-06	0.000000e+00	Pass	Explicit parallel asynchronous coupling junction instantaneous flow at coupling times
coupled volume	cpl_pvmeda	1.000000e-06	0.000000e+00	Pass	Explicit parallel asynchronous coupling volume quantities at coupling times
coupled junction	cpl_pvmedacs	1.000000e-06	0.000000e+00	Pass	Explicit parallel asynchronous coupling junction instantaneous flow at coupling times
coupled volume	cpl_pvmedacs	1.000000e-06	0.000000e+00	Pass	Explicit parallel asynchronous coupling volume quantities at coupling times
coupled junction	cpl_pvmedaps	1.000000e-06	0.000000e+00	Pass	Explicit parallel asynchronous coupling junction instantaneous flow at coupling times
coupled volume	cpl_pvmedaps	1.000000e-06	0.000000e+00	Pass	Explicit parallel asynchronous coupling volume quantities at coupling times
coupled junction	cpl_pvmedca	1.000000e-06	0.000000e+00	Pass	Explicit sequential asynchronous coupling junction integrated flow at coupling times
coupled volume	cpl_pvmedca	1.000000e-06	0.000000e+00	Pass	Explicit sequential asynchronous coupling vol- ume quantities at coupling times
coupled junction	cpl_pvmedcs	1.000000e-06	0.000000e+00	Pass	Explicit sequential synchronous coupling junction integrated flow
coupled volume	cpl_pvmedcs	1.000000e-06	0.000000e+00	Pass	Explicit sequential synchronous coupling volume quantities
coupled junction	cpl_pvmeds	1.000000e-06	0.000000e+00	Pass	Explicit parallel synchronous coupling junction instantaneous flow at coupling times
coupled volume	cpl_pvmeds	1.000000e-06	0.000000e+00	Pass.	Explicit parallel synchronous coupling volume quantities at coupling times

Semi-Implicit Coupling – includes calculation of coupled pressures

Attribute	Problem	Limit	Value	Pass/Fail	Comments
coupled pressure	cpl_cob	2.000000e-04	1.864387e-04	Pass	Semi-implicit coupling; relative error in coupled pressures between NUPAC and COBRA
coupled pressure	cpl_mom	2.000000e-04	1.893863e-04	Pass	Semi-implicit coupling; relative error in coupled pressures between NUPAC and COBRA
csa pres	cpl_pvmcore	1.000000e-06	0.000000e+00	Pass	Comparison of coupled volume pressure to standalone problem
csa vel	cpl_pvmcore	1.000000e-06	0.000000e+00	Pass	Comparison of coupled junction velocity to standalone problem
coupled junction	cpl_pvmcore	1.000000e-06	0.000000e+00	Pass	Comparison of semi-implicit coupled junction quantities
coupled pressure	cpl_pvmcore	1.000000e-06	0.000000e+00	Pass	Comparison of semi-implicit coupled volume pressures
csa pres	cpl_pvmcoresim	1.000000e-06	0.000000e+00	Pass	Comparison of coupled volume pressure to standalone problem
csa vel	cpl_pvmcoresim	1.000000e-06	0.000000e+00	Pass	Comparison of coupled junction velocity to standalone problem
coupled junction	cpl_pvmcoresim	1.000000e-06	0.000000e+00	Pass	Comparison of semi-implicit coupled junction quantities
coupled pressure	cpl_pvmcoresim	1.000000e-06	0.000000e+00	Pass	Comparison of semi-implicit coupled volume pressures
csa pres	cpl_pvmnonc	1.000000e-03	1.220703e-04	Pass	Comparison of coupled volume pressure to standalone problem
csa vel	cpl_pvmnonc	1.000000e-03	4.768372e-07	Pass	Comparison of coupled junction velocity to standalone problem
csa qualan	cpl_pvmnonc	1.000000e-06	0.000000e+00	Pass	Comparison of coupled volume quala(n) to standalone problem
coupled junction	cpl_pvmnonc	1.000000e-06	0.000000e+00	Pass	Comparison of semi-implicit coupled junction quantities
coupled pressure	cpl_pvmnonc	1.000000e-06	0.000000e+00	Pass	Comparison of semi-implicit coupled volume pressures
coupled qualan	cpl_pvmnonc	1.000000e-06	0.000000e+00	Pass	Comparison of semi-implicit coupled volume qualan

Attribute	Problem	Limit	Value	Pass/Fail	Comments
nm temp cpl_nmhstr	anl ny hatr	1.000000e-03	3.662109e-04	Pass	Comparison of nupac node temperature to
	cpi_mmsu				melcor temperature
nm qflux	cpl_nmhstr	1.000000e-04	0.000000e+00	Pass	Comparison of nupac surface heat flux to mel-
					cor heat flux
nm temp	cpl_nmhstrs	1.000000e-03	3.662109e-04	Pass	Comparison of nupac node temperature to
					melcor temperature
nm qflux	cpl_nmhstrs	1.000000e-04	0.000000e+00	Pass	Comparison of nupac surface heat flux to mel-
					cor heat flux

Conclusions

- An automated, quantitative, verification process has been developed for use with NUPAC and HYDRA and can be extended to RELAP5-3D and R5EXEC
- Quantitative pass/fail metrics to demonstrate verification status
- Allows positive verification of code features with each release
 - Does not rely upon daisy chain verification
 - Does not rely upon golden files
- Automation enables use
 - Easy to use and fast running
 - Includes identification of code failures or failing performance

