
Upgrades to RELAP5-3D Version 
Control, Installation, and Testing 
Systems

July 28, 2025

2025 IRUG Technical Seminar



RELAP5-3D Modernization

• RELAP5-3D has long been known for its robustness, reliability, and accuracy

• This is due to great coding standards and practices, and thorough verification and 
validation

• As the computing industry evolves, so too must programs that want to endure

• Having endured decades, RELAP5-3D required some modernization

• Keeping up with industry best practices:

− Increases maintainability

− Improves code quality

− Enhances collaboration

− Ensures the future of the software

2



Systemic Updates to RELAP5-3D

• Recently major updates have been made to the following aspects of RELAP5-3D:

− Version control 

• Switched from Subversion to Git

− Build system 

• Implemented CMake system

− Test system

• Developed in-house Python object-oriented system

• Implemented continuous integration into development process

3



Benefits of Git over Subversion (SVN)

• Each developer has a full copy of the 
repository (repo)

− Local operations are faster

− Offline work

• Greater collaboration

• More flexible workflow

• Powerful conflict resolution tools

• Active community

4

http://anoneh.com/417.php



Git Collaboration

5

Main 
Repo

Developer’s 
Fork

Developer's 
Local Clone

PushPull

Rebase

Pull 

Request

GitHub Enterprise

• Each developer creates a fork (private copy) of the entire 
main repo that resides remotely on GitHub

• The developer clones (downloads an identical copy of) 
their remote fork to a local repo

• Changes are made and tested in the local fork repo

• They can have one of 3 states:

− Modified files are in the working area but not yet 
staged

− Staged via “git add”. Not yet committed to local fork

− Committed via “git commit” are files made permanent 
in the local fork

• Push via “git push” uploads committed files to developer’s 
remote fork

• Create Pull Request (PR) to transfer from developer’s 
remote fork into main repo



New Code Modification Process

Previous SVN Process

• Code custodian provides latest source 
code to programmer

• Programmer develops and tests 
updates

• Programmer provides all modified files 
to code custodian

• Code custodian handles merge 
conflicts with other’s changes

• Code custodian pushes changes from 
all developers to SVN repository

New Git Process

• Code custodian manages access to 
the main remote Git repo

• Programmer makes fork of repo

• Programmer utilizes branches to 
implement and test changes

• Programmer creates pull request to 
upload updates to remote Git repo

• Code custodian and other approved 
programmers review changes

• Once changes are approved, updates 
are merged into the main branch. 

6



Build System Update – Migration to CMake

• Converted from a system of Makefiles and shell scripts to CMake

• Information System Laboratories (ISL) developed this CMake build system

− Huge thanks to Doug Barber, Collin Leavitt, and the ISL team

• Major Benefits:

− Streamlines configuration of build process

− Simplifies cross platform compilation

• Linux

• Windows

• MacOS

7



Historic Build System

• System of Make files and shell scripts

− Manually define source code structure and dependencies in the make files

− Use shell scripts to handle environment setup, pre-compilation tasks, and run 
the make system

− Custom rules and scripts for every source code directory

• System became streamlined through years of use and adjustments

− Hard for new developers to learn

• Windows compilation:

− Extensive work to configure Microsoft visual studio solution files to compile on 
windows

8



CMake Build System

• CMake is a meta-build system

− It generates system configuration files 
which are then compiled by the native 
build system

• Advantages:

− One system works for all environments

− Simpler to configure specific settings for 
folders and files

• User only specifies project structure

• Automatically manages dependencies

− Out-of-source builds

• Cleaner more organized

• Allows multiple build configurations

9

Source Code

CMake

Makefiles
Solution 

Files
Makefiles

Make
Visual 

Studio
XCode

Linux MacOS

Windows



Time savings with CMAKE

• Time savings from Cmake are due to:

− Parallelization

− Ensures optimal compiler settings are used

− Utilizes precompiled modules

• The table below shows the time for compilation of the Total and IRUG version 
using the historic build system (dinstls) and CMake with 1, 3, and 20 processors

10

Version Dinstls Cmake – 1 

processor

Cmake 3 – 

processors

Cmake – 20 

processors

Total 8 min 21 s 6 min 54 s 2 min 26 s 46 s

IRUG 7 min 46 s 6 min 45 s 2 min 13 s 48 s



RELAP5-3D Extensive Testing

• More than 2,600 test cases, divided 
into 18+ different test suites

• Base, Athena, and Other test suites 
are the standard installation tests

• Verification test suite verifies 200 
code capabilities are correct

• The Development Assessment 
performs Validation and Verification 
tests

11

Base cases KinDt TestBp

Athena Merror TestDt

Other Mstable TestMatrixDt

Extra Nkerr Verificaton_suite

Development 

Assessment

Nodal_Kinetics Dissolved gas 

model

FlexWall Pvm Other proprietary 

tests



Historic Test Procedures

• Each test suite contains shell script to run the tests

• Most contain additional scripts that analyze the results

• Programmers would run standard installation tests to check changes

• Code Custodian runs all test suites to verify and validate new release

− Test total version

− Create client versions from total

− Test all client versions

− If errors are found – fix and re-test all versions

• This took weeks to complete for an externally released code

12



New Test System

• Runs tests in parallel

− Drastically decreases test time

• Standardized format for all test setup in YAML format

• Each test requires:

− Input deck to run

− Checks to evaluate the run

• Checks are separate from the test script

− Once a check is developed, can be applied to 
any test in any test suite

• Evaluation if test passed or failed is performed 
automatically

13



Continuous Integration

• CIVET (Continuous Integration, Verification, Enhancement, and Testing)

• Connects to repository on GitHub Enterprise

• Test’s automatically start when pull request is initialized or modified

• PR cannot be merged without the tests passing

• Ensures modifications don’t break existing functionality

14



Conclusion

• The modernization of RELAP5-3D is essential to it’s continued excellence

• The updates presented here:

− Increase maintainability

− Streamline code modification process

− Utilize powerful industry standard tools

15



Battelle Energy Alliance manages INL for the U.S. Department of Energy’s Office of Nuclear Energy. 

INL is the nation’s center for nuclear energy research and development, and also performs research 

in each of DOE’s strategic goal areas: energy, national security, science and the environment.



Git Flexible Workflow

• The following Git features provide a more flexible workflow than SVN

• A branch is a copy of the code that allows developers to:

− Isolate work – make developments without affecting main codebase

− Make modifications in parallel with multiple developers or in parallel with 
developer’s own separate projects

− Aids the merging of changes made by multiple developers

• Staging area allows greater control of what changes get committed

− git add marks specified files to be committed 

• While both Git and SVN have “commits”:

− SVN commits push code directly to remote repository

− Git commits are applied locally

− Developers can create multiple commits before merging with codebase 

17


	Slide 1
	Slide 2: RELAP5-3D Modernization
	Slide 3: Systemic Updates to RELAP5-3D
	Slide 4: Benefits of Git over Subversion (SVN)
	Slide 5: Git Collaboration
	Slide 6: New Code Modification Process
	Slide 7: Build System Update – Migration to CMake
	Slide 8: Historic Build System
	Slide 9: CMake Build System
	Slide 10: Time savings with CMAKE
	Slide 11: RELAP5-3D Extensive Testing
	Slide 12: Historic Test Procedures
	Slide 13: New Test System
	Slide 14: Continuous Integration
	Slide 15: Conclusion
	Slide 16
	Slide 17: Git Flexible Workflow

