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Why Transient Test Nuclear Fuels & Materials?
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• Transient testing is like car crash testing for nuclear 
fuels

• Licensing a fuel system requires (see NUREG-0800):
− Identification of all degradation mechanisms and 

failure modes
− Definition of failure thresholds corresponding to 

each degradation mechanism 
− Applies to normal operations, anticipated 

operational occurrences and design basis 
accidents

• Many operational limits are dependent on degradation 
and failure thresholds

• Enables economic reactor operations via improved fuel 
design and performance understanding



Transient Reactor Test Facility (TREAT)
• The Transient Reactor Test Facility (TREAT) main mission is to test nuclear fuels and 

materials in off-normal and accident conditions 
− Operated from 1959-1994, was later refurbished, and resumed operations 2017

• Zircaloy-clad graphite/fuel blocks comprise core, cooled by air blowers
− Virtually any power history possible (within 2500 MJ max core transient energy)
− No reactor pressure vessel/containment, facilitates access for in-core instrumentation
− 4 slots view core center, 2 in use for fuel motion monitoring system & neutron 

radiography • Reactor provides brief (and typically extreme, up to 1017 n-cm-2-s-1 ) 
shaped neutron flux histories to test specimens

• Experiment vehicle does everything else
− Safety containment, specimen environment, and instrumentation

• Collocated at INL with other complimentary facilities
− Advanced Test Reactor (ATR) and Hot Fuel Exam Facility (HFEF)
− Numerous fuel fabrication and characterization capabilities
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TREAT Experimental Testbeds
• RELAP5-3D is an essential analysis tool for nearly all TREAT experiments
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Application: Advanced Multiphysics Code 
Coupling for Cladding Surface Thermocouples 
during Two-Phase Heat Transfer from Nuclear 
Fuel
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Summary
• Novel methodology for simulating the impact of outer cladding TCs during transient 

testing of nuclear fuels that does not require prior knowledge of the thermal-hydraulic 
conditions. 
− Leverages the thermal-hydraulic capabilities of RELAP5-3D and the BISON fuel 

performance code
− In-memory coupling between BISON and RELAP5-3D is enabled by the MOOSE-

wrapped application known as BlueCRAB
• BISON

− 3D FEA modeling of both the fuel rod and attached TCs
− Accounts for the inherent lack of azimuthal symmetry caused by the TCs.
− Approach enables the ability to capture both axial and azimuthal temperature and 

thermo-mechanical effects due to the TCs.
• RELAP5-3D

− Calculate the thermal-hydraulics (heat transfer coefficients, coolant temperatures, 
pressure) associated with the 3D representation of the fuel rod and TCs
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Motivation
• Attaching thermocouples to the outer surface of the cladding is known 

to affect the nearby surface temperature – including the temperature 
measured by the thermocouple
− What is the temperature of the cladding away from the 

thermocouple?
− How does the presence of the thermocouples affect the 

experiment performance?
• While recognized as an important area for interpreting experimental 

results, little research has been performed in this area
− NSRR analytical model [1]
− INL FEA modelling [2]
− Thermal-hydraulic boundary conditions (heat transfer coefficients, 

coolant temperatures, heat transfer regime regions, etc.) required 
as input parameters

• Develop a methodology using BlueCRAB to simulate the impact of 
outer cladding thermocouples thermo-mechanic behavior
− Thermal-hydraulic boundary conditions calculated by RELAP5-3D
− Thermo-mechanics simulated in BISON

T Illustration of the NSRR analytic model [1]

Comparison of temperatures predicted by the 
NSRR analytical model [1] and INL FEA 
model [2]

[1] Tsuruta, Takaharu, and Toshio Fujishiro. "Evaluation of thermocouple fin effect in cladding surface temperature measurement during film boiling." Journal of Nuclear 
Science and Technology 21.7 (1984): 515-527.
[2] Seo, Seokbin, et al. Sensitivity study on the fin effect of thermocouple mounted on the heated surface under film boiling condition. No. INL/CON-23-73285-Rev000. 
Idaho National Laboratory (INL), Idaho Falls, ID (United States), 2023.
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ATF-1-E Experiment
• Methodology developed and assessed using the Accident 

Tolerant Fuel–Reactivity-Initiated Accident–1–E (ATF-RIA-1-
E) experiment

• Static water capsule fresh fuel RIA experiment performed at 
INL in TREAT
− Water pre-heated to 200 °C, capsule pressurized to 2 

MPa
• Fresh UO2 fuel Zircaloy-4 cladding test rod

− Rod pressurized to 2 MPa
− 8 UO2 naturally enriched fuel pellets
− 2 insulator pellets (1 on each end)
− Total rod length ~15 cm

• Four integral junction thermocouples welded to outer cladding 
surface
− Two Type C, Two Type R
− TC 3 & TC 4 failed prior to or during transient
− TC is compromised of two wires spaced ~0.25 mm apart

• Wire diameter ~0.25 mm
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Illustration and images of 
ATF-RIA-1-E test fuel rod
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ATF-1-E Experiment
• RIA pulse full-width at half maximum: 89.8 ms

• Energy deposition: 590 𝐽𝐽
𝑔𝑔𝑔𝑔−𝑈𝑈𝑈𝑈2

• Peak TC measured temperatures > 1000 °C
− TC 2 rewets first at ~7.1 s, followed by TC 1 (8.4 s)

• Optical profilometry measured cladding diameter at
two locations (0°, 90°)
− Increased diameter in region of active fuel
− Slightly peaked toward bottom
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BlueCRAB Overview
Step 1: Transfer from RELAP 

to Interface Meshes
Step 2: Transfer from 

Interface Meshes to BISON

Run BISON Timestep

Step 3: Transfer from BISON 
to Interface Mesh

Step 4: Transfer from 
Interface Mesh to RELAP

Run RELAP to BISON Time
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BISON Geometry and Mesh

• Geometry and mesh of the cladding tube and attached TC 
wires were created using the FEA software, Abaqus/CAE

• Fuel pellet mesh created in BISON using 
FuelPin3DMeshGenerator 

• Cladding and TC wire mesh combined with fuel pellet mesh 
in BISON
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RELAP5-3D Model

• Capsule
−  1 pipe component represents static water capsule

• Outer cladding surface
− 24 heat structure geometries
− Each represents an azimuthal segment of the cladding surface
− All heat structure geometries connected to the capsule pipe component

• All but 1 heat structure geometry are “decoupled” from the pipe 
component

− Axial resolution increased near TC wire locations
• TC wires

− 8 heat structure geometries
− Each represents the outer surface of one TC wire
− Each heat structure geometry is connected to the pipe volume corresponding 

to its axial location in the capsule 
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BlueCRAB
• 1 interface mesh for the pipe component
• 24 interface meshes for the RELAP5-3D heat structure geometries representing 

the outer cladding surface
• 8 interface meshes for the RELAP5-3D heat structure geometries representing 

the TC wires
• Interface meshes are translated and rotated to the position that they represent on 

the BISON test rod 
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BlueCRAB
• Outer Cladding

− Temperatures as a function of axial and azimuthal position are transferred from 
BISON to RELAP5-3D

− RELAP5-3D calculates heat transfer coefficients based on these temperatures and 
transfers back to BISON

− Results in axial and azimuthal varying heat transfer coefficients transferred back to 
BISON

• TC Wires
− Temperatures vary along length of wire
− Heat transfer coefficients vary along length
− Captures change in heat transfer regime
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BlueCRAB
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This Work
• No assumptions on the heat transfer regimes of the 

cladding and TC wires were made
• Heat transfer conditions are computed by RELAP5-3D 

based on temperatures computed by BISON. 

Contour plot of relative film boiling heat transfer coefficient

NSRR Model [1]
• TH boundary conditions 

are required inputs. 

Illustration of the NSRR analytic 
model [1][1] Tsuruta, Takaharu, and Toshio 

Fujishiro. "Evaluation of thermocouple fin 
effect in cladding surface temperature 
measurement during film 
boiling." Journal of Nuclear Science and 
Technology 21.7 (1984): 515-527.15



Results
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Comparison of ATF-RIA-1-E TC data and BlueCRAB Predictions
• Good agreement up until experimentally observed 

rewet
− Simulation predicts slightly higher TC 1 

temperatures, as observed in experiment
• After the point of rewet in the experiment, 

temperature fluctuations in the TC predictions are 
observed
− Predicted changes between the film boiling 

and transition boiling heat transfer regimes 
along the wire near the cladding

• Although the simulation does not predict rewet 
until a much later point in time, the TC 
temperature fluctuations, may provide insights 
into mechanisms driving rewet around the TCs
− Heat transfer regime on TC wire surface 

moves from film boiling to transition boiling, 
vapor film collapse/regrowth may break the 
vapor film on the cladding surface, allowing 
liquid coolant to move in and rewet the surface

Changes in heat 
transfer mode
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Axial Temperature Distribution 2 seconds into transient
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• TC wires ~80 °C less 
than unperturbed 
cladding

• Extent of the 
temperature decrease 
extends about 5 mm 
around the TC wire 
cladding interface
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Temperature contour plot showing azimuthal and axial 
variation in cladding rewet
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Simulation overpredicts cladding diameter, but shows 
qualitative agreement
• Simulations predicts cladding diameter slightly peak toward bottom of active fuel
• Predicts lower cladding strain at locations of TC wires due to lower temperature

9.4

9.5

9.6

9.7

9.8

9.9

10

10.1

10.2

10.3

0 50 100 150 200

C
la

dd
in

g 
D

ia
m

et
er

 (m
m

)

Axial Location (mm)

0 Degrees (Exp.)

90 Degrees (Exp.)

Cladding Tolerance Limits

Mid

Opposite

20

~3% Strain

~7% Strain

0 Degrees

90 Degrees

Wire 1

Wire 2

MidOpposite



Conclusions
• The Transient Reactor Test Facility (TREAT) at INL is used to test nuclear fuels and 

materials in off-normal and accident conditions
− RELAP5-3D is an integral part in the design and analysis of experiments

• New RELAP5-3D/MOOSE (BISON) coupling capabilities are being utilized to further 
enhance the design and interpretation of experiments

• Novel methodology for simulating the impact of outer cladding TCs during transient 
testing of nuclear fuels that does not require prior knowledge of the thermal-hydraulic 
conditions
− Leverages the thermal-hydraulic capabilities of RELAP5-3D and the BISON fuel 

performance code through BlueCRAB
• Methodology applied to the ATF-RIA-1-E experiment, and the simulation results are then 

compared to the experimental data
− Simulation results show good agreement with the TC measurements and indicate that 

the local cladding temperature is approximately 80 ºC lower than the cladding 
temperature far from the TC location

− Predictions indicate temperatures peaked toward the bottom end of the rodlet, which 
agrees with the TC data
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