# Acceleration of UQ and PRA with RAVEN Hybrid Model

#### A. Alfonsi, C. Wang, C. Rabiti, D. Mandelli, P. Talbot, C. Parisi





IRUG 2018 Idaho Falls, 3-4 May, 2018





# Outline

- RAVEN overview:
  - General Code Infrastructure
  - UQ and PRA capability needs
- Surrogate Modeling:
  - Overview
  - Validation
  - Optimization
- Hybrid Modeling
  - Automated model selection
- Future Work



#### RAVEN overview

# **RAVEN** overview



## Project Background

- RAVEN development has begun in early 2012. Been supported by:
  - Light Water Reactor Sustainability (LWRS), under the RISMC path-way
  - Nuclear Energy Advanced Modeling and Simulation Program (NEAMS)
  - Nuclear-Renewable Hybrid Energy Systems (NHES)
- The overall goal was to conceive a tool to enable Risk Informed Safety Margin Characterization (RISMC)
  - Evaluating risk (uncertainty propagation)
  - Understanding risk (limit surface, ranking, sensitivity, data mining)
  - Mitigating risk (optimization)



#### **RAVEN** Infrastructure





#### UQ and PRA: Capabilities vs. Needs





# DPRA and UQ methodologies

# Dynamic PRA and UQ common methodologies



# Samplers (Forward)

RAVEN supports many forward samplers

- Monte Carlo
- Grids:
  - equal-spaced in probability and/or in value or custom
  - mixed (probability, custom, value)
- Stratified (LHS type)
  - equal-spaced in probability and/or in value or custom
  - mixed (probability, custom, value)
- Factorial Designs:
  - 2-Level Fractional-Factorial
  - Plackett-Burman
- Response Surface Designs:
  - Box-Behnken
  - Central Composite
- Generalized stochastic collocation polynomial chaos

#### A different sampling strategies can be associated to each variable separately



## Models

RAVEN support five different models' entities:

- ROM (Reduced Order Models). This type of models are constitute by already trained supervised learning algorithms (RAVEN can use data sets for their training)
- External Models. External models are made of python code that use directly the "model" class
- External codes. These are classical third parties codes. The API requires the implementation of writing/reading to/from the input/output files
- Ensemble Model. Assemble of multiple models
- Hybrid Model. Smart Assemble of Surrogate and "high-fidelity" models



## ROMs: a Quick Introduction

• Consider a set of *N* data points

Output: Simulation outcome (success/failure, max clad temperature)

Data



Inputs: Initial and boundary conditions

- Build a surrogate model
  - Reduced Order Model  $G(x): x_i \longrightarrow G(x_i) \cong F(x_i)$





# ROMs: a Quick Introduction

• Basically we are trying to reduce the complexity of the original model



- Pros:
  - Much faster computation of the output variable
- Cons:
  - Presence of error in the ROM computed values



## Cross-Validation for assessing Surrogate Models validity

- Take out some of the training set
  - Train on the remaining training set
  - Test on the excluded instances
  - Cross-validation
  - Cross Validation



• Compute a score (e.g. R<sup>2</sup>)



#### Model validation RAVEN scheme





Mean Absolute Error score (Cross-validation) as function of # samples



#### Surrogate Model Optimization





### Ensemble model

- Multiple "models" can be assembled together and treated as a single one
- Models can be completely heterogeneous (code, external models, ROM)
- RAVEN acts as a hub for the information exchange
- Information passed between "models" could be:
  - Set of lump values
  - Set of time series or fields

$$\overline{x}_{1} = \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \xrightarrow{\mathsf{Model}} \overline{y}_{1} = \begin{pmatrix} \Theta \\ \Sigma \end{pmatrix} \xrightarrow{\overline{x}_{2}} \xrightarrow{\mathsf{G}} \begin{pmatrix} \Theta \\ \delta \end{pmatrix} \xrightarrow{\mathsf{Model}} \underbrace{y}_{2} = \begin{pmatrix} \Phi \\ \Pi \end{pmatrix} \xrightarrow{\overline{x}_{3}} \xrightarrow{\overline{y}_{3}} \xrightarrow{\overline{y}_$$



#### Hybrid-Model (automatic selection ROM/physical model)



• The *HybridModel* is designed to combine multiple surrogate models and any other Model (i.e. high-fidelity model) leveraging the *EnsembleModel* infrastructure, deciding which of the Model needs to be evaluated based on the model validation score.



# Application of the Hybrid Model on a PWR SBO using RELAP5-3D



1000 Monte Carlo samples



# Application of the Hybrid Model on a PWR SBO using RELAP5-3D



200 RELAP5 evaluations over 1000 MC Samples

#### **RELAP5-3D**

| Parameter | Result |  |
|-----------|--------|--|
| mean      | 462.64 |  |
| Minimum   | 458.57 |  |
| Maximum   | 467.32 |  |
| Median    | 462.64 |  |

#### HYBRID MODEL

| Parameter | Result |  |
|-----------|--------|--|
| mean      | 462.65 |  |
| Minimum   | 458.03 |  |
| Maximum   | 467.53 |  |
| Median    | 462.64 |  |



#### Future work on the Hybrid Model

- Identification of Time-dependent validation metrics
- Extension of the Hybrid Model in the time-domain
- Development of model-based local validation metrics



Thank you