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- Flexible Operation as a possible solution to cope with the evolving cost structure in 
U.S. electricity deregulated markets and penetration of renewable energy sources

MOTIVATION AND CHALLENGES

- Q. What does this entail for Nuclear Power Plants?

 Electrical power level adjusted on hourly basis
 Thermo-mechanical load variations might accelerate 

component wear and tear  Process variables need to 
be constrained to limit operational and maintenance 
(O&M) costs.

- Advanced control techniques provide a quantitative 
estimate of the Normal Operation Region (NOR) and 
Admissible Region (AR).

- Need for a suitable tool to track and visualize the 
plant response during transients.



Three sub-systems:
• Balance of Plant
• High Temp. Steam Electrolysis (HTSE)
• Gas Turbine

Variables:
• 3 inputs (power set-points);
• 6 monitored process variables.

Examples:
o 𝑦𝑦1: Turbine inlet temperature, 
827℃ < 𝑦𝑦1 < 1289℃ to avoid 
inefficient combustion and structural 
degradation

o 𝑦𝑦3: HTSE H2 Production Rate, 
2.0 ⁄g s < 𝑦𝑦3 < 10.0 ⁄g s to avoid 
cold-start or breakdown of the Solid 
Oxide Electrolysis Cell
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 Solution #1: Dynamic Spider Chart for outputs Extension of the well-known spider 
chart / radar chart for static 
applications
• 3+ equiangular axes starting from 

the same point by spokes;
• Length of spokes is proportional to 

the magnitude;
• Polygon to represent a data point.
Improvement by ANL:
• Animation to track data history;
• Grey ring show bounds;
• Pink / green polygon show 

historical max / min in each 
dimension

• Yellow warning indicate historical 
violations of either the lower or 
upper bounds

• Red warning indicate historical 
violations of either lower and 
upper bounds

SOLUTIONS TO NOR VISUALIZATION



 Solution #2: 3D Phase Space diagram for outputs Extension of classic 3D trace plot:
• System response is represented 

by a 3D trajectory
• Each point represents the values 

of three selected monitored 
variables during the transient.

Improvement by ANL:
• Animation to track data history
• NOR is shown by grey-colored 

parallelepiped
• Red dots indicate the margin with 

respect to the NOR bounds
• Thickness of the curve to show 

the direction of system response;
• Gold star shows current value   
• Red trace -> constraint violation
• Blue trace -> constraint 

compliance.

SOLUTIONS TO NOR VISUALIZATION

Q. In case of constraint violation, how can the operator modify the input variable?



 3D convex polytope for inputs

• Blue Circle indicates tentative input variable;

• Orange Triangle indicates the proposed 
adjustment as a compromise between (1) 
performing the desired transient and (2) staying 
within the Admissible Region.

SOLUTIONS TO AR VISUALIZATION
If the system dynamics can be described by a 
state-space representation model:

The bounds on output can be translated into a 
admissible region on input:

And this admissible region is shown by yellow 
convex polytope.

𝑥⃑𝑥 𝑘𝑘 + 1 = 𝐴𝐴𝑑𝑑𝑥⃑𝑥 𝑘𝑘 + 𝐵𝐵𝑑𝑑𝑣⃑𝑣 𝑘𝑘
𝑦⃑𝑦(𝑘𝑘) = 𝐶𝐶𝑑𝑑𝑥⃑𝑥(𝑘𝑘) + 𝐷𝐷𝑑𝑑𝑣⃑𝑣(𝑘𝑘)

𝐻𝐻 � 𝑣⃑𝑣(𝑘𝑘) ≤ ℎ



 Power transient to be evaluated:
DEMONSTRATIONS



 Output variables and NOR:
DEMONSTRATIONS



DEMONSTRATIONS
 Input variables and AR:



 A visualization technique to evaluate the power transients of a thermally couple 
system was developed and demonstrated. 
 The multi-dimensional admissible region for input variables (system actuators) 

and the evolution history of key monitored process variables are visible to the 
operator. 
 Any violation of operational constraints will be directly shown and brought to the 

user’s attention. Suggestions on input variable adjustment is also provided.
 This method would strengthen the user trust when planning and evaluating 

power transients.
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EVOLUTION OF USER INTERFACES
sto y o  U
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https://www.zauberware.com/en/articles/2019/conversational-ui/
https://android-developers.googleblog.com/2016/06/create-intelligent-context-aware-apps.html



CONTEXT-AWARENESS

 “any information that can be used to characterize the situation of an entity. An 
entity is a person, place or object that is considered relevant to the interaction 
between a user and an application, including the user and applications 
themselves”. [Dey, 2001]

 Involves gathering and analyzing contextual data like user location, history, 
device sensors, activity, etc.

 Tailor services and interactions, providing users with personalized and timely 
experiences

Dey, A. K. (2001). Understanding and using context. Personal and ubiquitous computing, 5, 4-7.



KEY COMPONENTS OF 
CONTEXT-AWARENESS
 Sensors and Data Sources
 Context Inference and Interpretation
 Adaptive Behavior and Response Mechanisms
 User Feedback Loop
 Multimodal Interaction Support



WHY CONTEXT-AWARE USER 
INTERFACES?
 Personalization and Customization
 Enhanced User Experience
 Contextual Decision Support
 Efficiency and Productivity
 Adaptation to Dynamic Environments
 Anticipation of User Intentions



CHALLENGES 

 Data Privacy and Security Concerns

 Accuracy and Reliability of Context Inference

 Scalability Across Devices and Environments

 Technical Complexity

 User Acceptance and Adoption Challenges



OPPORTUNITIES
 Enhanced Personalization and User Experience

 Contextual Collaboration

 Efficient and Improved Decision Support

 Seamless Integration Across Devices and Platforms

 Increased Efficiency and Productivity

 Potential for New Interaction Paradigms (e.g., AR/VR)



FUTURE TRENDS

 Continued Integration of AI and Machine 
Learning
 Advancements in Sensor Technologies
 Convergence with Internet of Things (IoT)
 Emergence of Brain-Computer Interfaces (BCI)



THANK YOU!!
rajiv.khadka@inl.gov
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Explainability comes in different forms depending on 
which model you use.

• How do we explain these 
models to the user? 

• How much would you have to 
explain to go from an input to an 
output? 2 [m, c] 2 [2 splits]

Number of weights, 
biases, & connections.

Support vectors, kernel 
trick and hyperplane.

Data
Hyperparameter

s
& Optimization

Model Post 
hoc

Effects model performance and explainability Explainability



LIME is a post-hoc method for black-box models.

• Local interpretable model-
agnostic explanations (LIME) 
can be used for any model.

• LIME is only valid locally.

• SHAP (Shapley Additive 
Explanations) are another 
common post-hoc method 
used to increase 
explainability.

Giorgio Visani, 2020 “LIME: explain Machine Learning predictions.”Accessed 2024. 
https://towardsdatascience.com/lime-explain-machine-learning-predictions-af8f18189bfe



Model confidence, prognostics, explainability, and historical 
context all provide evidence for the conclusion.



Adding context to the data can further improve understanding. 
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in each of DOE’s strategic goal areas: energy, national security, science and the environment.
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Premise

• Radio Frequency (RF) Signal analysis and Computer Vision.

• How might we identify signals of interest in the RF spectrum?

• All of this is done in the context of a tool called WiFIRE. 



Premise: Need for Wireless Monitoring

• Signals missing that should be there
−Equipment failures?
−Theft?

• Signals that are there that shouldn't be
− Jamming?
−Data Exfiltration?
−Unauthorized User/Device?

• Blackbox analysis
−Ability to take a device and determine what signals are being emitted

• Signal Compliance Verification
−Damaged/Low Quality Hardware?
−Spectrum Misuse?



Technical Challenges

• Large amount of raw wireless data
−25 million samples (IQ values) per second
− IQ value = 16 bits each for I and Q (32 bits / 4bytes total)
−5.6 GiB per minute
−7.9 TiB per day

• Differentiating signal from noise
• How to keep up with a high sample rate
• Accurate and effective machine learning algorithms for detection and 

classification of wireless signals



Inference Input



Inference Input
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Aside: Wireless Environment Baselining

• Goal: Identify anomalous signals using an 
unsupervised approach

• Strategy:
− Collect data at the target location
− Train an autoencoder model to compress 

and restore the collected data – this is 
the baseline model

− Apply the baseline model to a new 
sample and then compare the sample to 
the reconstructed version

− Any signal that is reconstructed poorly – 
beyond a calculated threshold – is 
considered anomalous Image from 

assemblyai.com



Our Focus: Signal Classification and Localization
• Goal: Identify known signals of interest. Unlike anomaly 

detection, this is a supervised ML problem.
• Strategy:

− Collect data with known signals and manually label 
the data

− Train an object detection model using YOLO(V7)
− During inference, the model is used to determine 

bounding boxes of identified signals
− System draws the identified bounding boxes from 

the model
− Allow for multiple classes of signals to be identified 

in a single image (Multi-label)



How does YOLO work? 

• Single pass (You only look once) as 
opposed to multi-pass approaches like 
DPM or R-CNN. 

• Uses a single convolutional neural 
network as opposed to a complex pipeline 
of sliding windows and classifiers.

• Allows for global awareness within each 
image. 

Redmon, Joseph, Santosh Divvala, Ross Girshick, and Ali Farhadi. "You only 
look once: Unified, real-time object detection." In Proceedings of the IEEE 
conference on computer vision and pattern recognition, pp. 779-788. 2016.



How does YOLO work? (cont.)

• Divide input image into an S x S grid (S 
is chosen as a hyperparameter).

• Each grid square predicts up to B 
many bounding boxes within that grid 
square.

• Calculate class probabilities for each 
grid square as well as confidence 
levels (IOU).

• Bounding box predictions and class 
probabilities are combined to create a 
final predicted set of boxes.

• Boxes with confidence below a certain 
threshold are dropped. 



Results

• Baseline Comparison and Signal Classification inferencing done in parallel
• Inference results are returned as a set of bounding boxes
• These bounding boxes are shown as color-coded overlays on the User 

Interface



Results (cont).



Results (cont).



Results (cont).



Weird Anomaly Detected at C3

• Below is an anomaly that we detected using these models. It is in the 2.4 Ghz. range.
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Yolo for Dislocation-Type Defects via Transfer Learning

INL/MIS-XX-XXXX46



Challenges:

• Experts required to label
• TEM images can be challenging to interpret
• Very small number of images expected to be labelled
• Density and dislocation-type defect identification crucial for material property analysis
• Not a large domain field with large community support

INL/MIS-XX-XXXX47



Solution:  Transfer Learning

INL/MIS-XX-XXXX48

Original Expert Annotated Transfer – coco 2017 Transfer – med Arcade

IOU: 0.33158IOU: 0.17723



INL High Performance Computing 
Resources

Lemhi

• INL HPC systems support a wide range of users and programs 
as a shared-use resource for national laboratories, universities, 
and industry

• Bitterroot (2024)
• 41,888 computecores

• Hoodoo (2021) 
• Machine Learning Cluster
• 108 A100 GPUs

• Sawtooth (2020)
- 6 Petaflops performance
- 2,079 compute nodes, 99,972 compute cores
- #37 on November 2019 TOP500 list

• Lemhi (2018)
− 1 Petaflop performance
− 504 compute nodes, 20,160 compute cores
− #427 on November 2018 TOP500 list

A right-sized solution for DOE Nuclear Energy research and development

Sawtooth

49
INL/MIS-22-70495



Bitterroot

• 384 Nodes
−Node specs

• 2 Sapphire Rapids 56 core CPUs
• 256 GB RAM

−48 nodes with HBM
• 41,888 cores
• 200 Gb/s OmniPath network 
• Will complement existing systems 

(Sawtooth, Lemhi, Hoodoo, Viz)
• Delivery 16 March 2024
• Expected commissioning date: 16 April 

2024

Commodity Technology Systems-2 (CTS-2)

INL/MIS-XX-XXXX50



• NRDS: a place for public data to be stored and accessible in 
perpetuity

• Near real time analysis
‒Stored close to HPC systems, allows data to be analyzed 

in near real time

• Publicly available
‒Data co-located with projects
‒Easy to find via search and tags
‒ Traceable 

‒Digital Object Identified (DOI) for projects

• FpAIRe data
‒ Findability, Peekable, Accessibility, Interoperable, 

Reusable, Extensible

• AI analysis
‒Super resolution
‒Active detection

NSUF Nuclear Research Data System (NRDS): https://nrds.inl.gov



Questions?

INL/MIS-XX-XXXX52
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