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AI/ML in Instrumentation, Control, and Automation

”Imagine a wizard buying a rusty old car and telling his 
wife all he wanted to do with it was take it apart to see 
how it worked, while really he was enchanting it to make 
it fly.” – Molly Weasley, Harry Potter and the Chamber of 
Secrets



“AI/ML in Instrumentation, 
Control, and Automation”

Agenda – ML/AI Symposium 11.0
April 27, 2023 - 11:00 am to 1:00 pm MDT

Time Subject Speaker

11:00 – 11:05 Welcome, Introductions, and Agenda
Nancy Lybeck
Department Manager, Instrumentation, Controls, & Data Science
INL

11:05 – 11:20 Experimental demonstration of a data-driven control system for the MIT 
Graphite Exponential Pile Jiankai Yu, MIT

11:20 – 11:35 Can we use machine learning to control nuclear power plants? Jake Farber, INL

11:35 – 11:50 AI for Modeling, Optimizing, and Controlling Complex Systems in Science 
Domains Prasanna Balaprakash, ANL/ORNL

11:50 – 12:05 Remote Operations and Monitoring of Microreactors and the Opportunity for 
ML/AI Joe Oncken, INL

12:05 – 12:20 Machine Learning techniques for enhanced model-based control Brendan Kochunas, U of Michigan

12:20 – 12:35 Autonomous Control with ML/AI for Microreactors: Opportunity and Challenge Linyu Lin, INL

12:35 – 12:50 Unattended Operation of Fission Batteries Vivek Agarwal, INL

12:50 – 1:00 Wrap-up Nancy Lybeck



Battelle Energy Alliance manages INL for the U.S. Department of Energy’s Office of Nuclear Energy. 
INL is the nation’s center for nuclear energy research and development, and also performs research 

in each of DOE’s strategic goal areas: energy, national security, science and the environment.



Experimental Demonstration of a Data-Driven Control 
System for MIT Graphite Exponential Pile

Jiankai Yu1, Jarod C. Wilson2, Akshay Dave3, Kaichao Sun4 and Bren Phillips1* 
1 Nuclear Science and Engineering

2 Nuclear Reactor Laboratory
3Argonne National Laboratory

4 International Atomic Energy Administration



Acknowledgments
• This work is supported by DOE NEUP Award Number:DE-

NE0008872. 

7



Presentation Outline
• Background

– Core motivation
– MIT Graphite Exponential Pile (MGEP)

• Methodologies
– Control system overview and constraints
– In-pile control components
– Machine Learning Methodology

• Experimental Demonstration
– Performance summary
– Fault Tolerance

• Conclusions/Future Work



Research Objectives

• Experimental Demonstration of Autonomous 
Control of a Fission System (MGEP)
• Virtual control system

• Neural network surrogate model for detector signal 
generation

• Neural network regression model for control rod 
prediction

• Experimental data calibration
• Neural network trained by experimental data 

• Autonomous control system
• Hardware integration
• LabVIEW interface 
• In-pile experimental demonstration
• Fault Tolerance

9

East
North

West



• MIT Graphite Exponential Pile (MGEP)
• Constructed in 1950s with surplus nuclear-grade graphite from MITR 

construction.
• Fell out of use sometime circa 1970.
• ‘Rebooted’ in 2016,
• Excellent facility for demonstration

• 90”×90”×90” (plus underground pedestal)
• Pu-Be / Cf-252 neutron source operation
• 1,288 natural uranium slugs
• Subcritical (keff ≈ 0.8)

Background - MGEP
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Development of Data-driven Control System (DCS)

• Perfect candidate to serve as testbed for ML-based system.

– Subcritical => experimental systems can operate safely.

– Existing body of work (internal) for pile characterization, modelling, 
instrumentation and controls, and applicability of ML.

– Physical construction allows high configurability.

• High-level system design informed by MGEP characteristics, constraints.

– Measurement and perturbation of neutron flux based on 2D axial sinusoidal profile 
around neutron source.

– Actuation of instrumentation and control devices limited geometrically to accessible 
channels.



Hardware Integration

• Experiment setup
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Numerical Modeling of MGEP

• Comparison w/ experimental data
• CRDs in H layer
• Detector in F, G, I, J layers
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Detector

0

x

z

-110 cm 110 cm

Comparison results verifies the accuracy of numerical modeling of MGEP.



Project Overview

 First-of-a-kind engineering demonstration of reactor autonomous control 
supported by machine-learning aided real-time prediction*

1. Detectors: periodic move

2. ICR: random move

3. RCR: supervised move

4. Physics model

5. Neural Network

6. Decision Making
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Artificial Neural Network

• Toolkit
• TensorFlow (Keras)
• NPSN (https://github.com/a-jd/npsn)

• Data sets
• Simulation data
• Experimental data

• Neural networks
• NN-S (Surrogate model)

• Input: Control rods positions
• Output: Flux map
• Only in virtual control system

• NN-CR (Control rod regression model)
• Input: Perturbated flux map
• Output: Control rod positions
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Figure of Merit

• Two Neural Networks
• NN-S (Surrogate model)
• NN-CR (Control rod regression model)

• Figure of Merit 
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𝑓𝑓𝑁𝑁𝑁𝑁−𝑆𝑆 = 𝑓𝑓 𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅, 𝑥𝑥𝐼𝐼𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝜑𝜑 𝑑𝑑1,⋯ ,𝑑𝑑𝑀𝑀 

𝑓𝑓𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅 = 𝑥𝑥𝐼𝐼𝑅𝑅𝑅𝑅
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 𝜑𝜑 𝑑𝑑1,⋯ ,𝑑𝑑𝑀𝑀 , 𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅

𝛿𝛿𝑁𝑁𝑁𝑁−𝑆𝑆 =
𝜑𝜑 𝑑𝑑1,⋯ ,𝑑𝑑𝑀𝑀 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 − 𝜑𝜑 𝑑𝑑1,⋯ ,𝑑𝑑𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝜑𝜑 𝑑𝑑1,⋯ , 𝑑𝑑𝑀𝑀 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝛿𝛿𝑁𝑁𝑁𝑁−𝑅𝑅𝑅𝑅 = 𝑥𝑥𝐼𝐼𝑅𝑅𝑅𝑅
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝 − 𝑥𝑥𝐼𝐼𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎



Neural Network Optimization
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Hyperparameters Search Space Best 
Values

Number of intermediate dense 
layer

[1~5] 3

Activation function ELU, ReLU, Sigmoid, 
Softsign, Softplus, 

Tanh

ReLU

Shape of intermediate dense 
layer

[256, 512, 1024] 1024

Loss function LogCosh, MSE, 
MAPE, MSLE

LogCosh

Optimizer [Adam, SGD] Adam

Batch size per epoch [4, 8, 16, 32] 8



Interface of Virtual Control System

NN: Digital twin
Input:  𝑥𝑥𝐼𝐼,  𝑥𝑥𝑅𝑅
Output:  𝜙𝜙(𝑥𝑥)

CR Position
Display: 𝑥𝑥𝐼𝐼, 𝑥𝑥𝑅𝑅

CR Manipulation
Controls: 𝑥𝑥𝐼𝐼 or 𝑥𝑥𝐼𝐼,  𝑥𝑥𝑅𝑅

Detector signals
Displays: 𝜙𝜙1, …, 𝜙𝜙𝑀𝑀  

RCR Controller
Inputs: 𝜙𝜙1, …, 𝜙𝜙𝑀𝑀, 𝑥𝑥𝑅𝑅
Controls: 𝑥𝑥𝑅𝑅 
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LabVIEW Interface

• TCP/IP Interface
• Detectors’ data collection 

• Python Interface
• TensorFlow execution
• Pre-trained NN-S and NN-CR

• Arduino Interface
• Arduino board to control stepper motors
• Stepper motor-based control rod moving system

• Hardware integration
• Hardware development 
• Detector moving system
• Dual control rods moving system

19



Experiment Workflow

Convergence criteria:
𝛿𝛿 = 𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑎𝑎𝑎𝑎𝑝𝑝𝑝𝑝𝑝𝑝 − 𝑥𝑥𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎



Temporal Resolution
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• Benefit from high-resolution data
• Low resolution data set (60s measuring time)
• High resolution data set (120s measuring time)

Low-resolution data High-resolution data



Optimized Results
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• Using high temporal 
resolution data (120 s) 
• Low enough error to make 

further counting not beneficial 
given other experimental errors

• >140 cases for ICR and RCR 
position

• ICR control rod position 
predicted with +/- 1.5 cm 
accuracy.



Example Pile Response
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ICR perturbation RCR responding

RCR
responding

• Movement of RCR based on initial 
ICR position

• After neural network prediction, RCR 
moves to location symmetric to that 
predicted by the ICR

• Goal is to achieve a symmetric flux 
profile

• Upon arrival at the predicted position 
the detector scans the channel again 
and will update prediction

• RCR moves to new predicted 
location



Fault Tolerance
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• Number of fault tolerance methods 
explored
• Principal component analysis (PCA)
• Interquartile range (IQR)
• K Nearest Neighbors (kNN)
• t-Distributed Stochastic Neighbor 

Embedding (t-SNE)
• Convolutional neural networks

Method of Evaluating Fault Fault Detection Accuracy

PCA + IQR 95%
T-SNE + KNN 68.5%
T-SNE + CNN 75%

Method Accuracy



Conclusions

• Digital twin and autonomous control system developed for MGEP
• Two movable control rods & single moveable detector system

• Experimental Autonomous control system successfully developed 
for the MGEP
• Autonomous system can respond to flux perturbations in the profile from 

unknown control rod movement
• Fault Tolerance methods shown to be capable to reject bad data 

points from the system.
• PCA + IRQ found to be the best combination of methods
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Future Work

• Additional improvements on MGEP control system
• Higher work and more control rods
• Using different detector setups to more closely mimic critical system.
• Use flux as objective function

• Applications to microreactor
• First step would be a digital twin of the microreactor and building a digital twin control 

system to test ANN control systems

• Apply methods to a critical system such as a research reactor
• More regulatory impediments, but something such as an ANN controlling the regulating 

rod would be a logical first step.

26



Can We Use Machine Learning to 
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Advanced reactors will be highly autonomous and remotely controlled, 
and will operate at variable power ratings and in rural locations

https://www.energy.gov/ne/articles/infographic-advanced-reactor-developmenthttps://www.energy.gov/ne/articles/what-nuclear-microreactor

These characteristics necessitate more 
intelligent means of control



Typical methods of ML-based intelligent control either use 
reinforcement learning as a controller or use ML to model the plant

ML model(s)
+

Controller(s)
Plant

sensor
outputs

control
actions

reference
inputs

Reinforcement- 
learning-based 

controller(s)
Plant

sensor
outputs

control
actions

reference
inputs



Regulatory requirements consider the determinism, simplicity, 
explainability, and verifiability of NPP control systems

• Example general considerations
− Many ML algorithms are stochastic
− Many ML algorithms are black box 

in nature
• Example control-specific consideration

− ML-based control lacks history of 
verifiable stability and performance

New solutions may be necessary to 
overcome these barriers in using ML to 

directly control NPPs

Unstable

Stable



Alternatively, high-performance control could be employed for direct 
control, with ML implemented via supervisory control and digital twins

Plant 
(Controlled 

Process)
Human Reference Sensor Measurements

Digital Twin

Supervisory 
Control

HP Control

Logical Control
External Requirements
Risk



These systems can be expanded to show research gaps that need to 
be closed before implementing this hierarchical approach

Digital Twin

Sensors 
Multiplexer/ 

Estimator

Plant 

Sensor Measurements

Operational 
State 

Awareness  

Passive 
Control

Equipment

 

High Performance (HP) Control

Supervisory Control  
(AI/ML-assisted Control)                                                          
      

Interface of 
Supervisory & 

HP Control 

Condition 
Monitoring 

Interface of 
Risk & 

Performance

Real-time Plant 
Performance 

Optimizer

Others
Gap

Supervisory Control

Digital Twin

Risk Model

External Sensor 
Measurements

Actual Internal 
Sensor 

Measurements

HF Model  

External 
Requirements

Controller 
Multiplexer 

LF Model
(Physics or 
Empirical)  

Plant Change 
Compensator

Control 
Optimizer

Controller 
Interface of 

Logical and HP 
Control

Controller 

        Logical Control

Interface of 
Supervisory & 
Logical Control 

Interface of 
State 

Awareness & 
Performance

Human 
Override

HP Control
Logical Control

Human 
Reference



Conclusions

• Using ML to directly control NPPs may necessitate new solutions that 
consider determinism, simplicity, explainability, and verifiability

• Our hierarchical solution can be broken into two parts:
−Perform direct control using high-performance methods that possess 

these important characteristics
−Provide control support and analysis by using digital-twin-assisted 

supervisory control that can benefit from ML and conveys less risk
• Many open research questions remain to be answered before this 

hierarchical solution can be implemented

Questions?
jacob.farber@inl.gov
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AI for Modeling, Optimizing, and Controlling
Complex Systems

General Atomics: DIII-D

Model

Optimize

Control

HPC Platforms

Argonne Tandem 
Linear Accelerator System

Atmospheric Radiation 
Measurement

AI/ML



38

Nuclear Power Plant Control

Image credit: https://www.foronuclear.org/en/updates/in-depth/what-are-the-different-components-of-a-nuclear-power-plant/

• Nuclear power: carbon-free baseload energy 
source that suffers from high upfront capital and 
operating costs

• Autonomous operation of nuclear power plant
• drastically reduce variable O&M costs

• Autonomous agents provide other indirect 
benefits:

• reducing errors (risk)
• improving scalability of deploying multiple 

reactors of the same design



39

Load-follow transient: important for advanced reactors to adopt due to the increasing proportion of intermittent 
energy sources

accept the 
requested 
change in power, 
as far as no 
constraints on 
system states 
are violated

Nuclear Power Plant Control
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Safe Reinforcement Learning for 
Nuclear Power Plant Control

• System Analysis Module (SAM)
• high-fidelity physics-based 

simulator of nuclear power 
plants 

• model multiple reactor 
designs (molten-salt, lead-
cooled, fluoride-cooled)

• enforce physical constraints on 
state of system or actuators

SUPERVISORY NPP 
AGENT

SAM-RL ENVIRONMENT

SAM
NPP Model

• Thermophysical 
Properties

• Plant Components
• Thermal Hydraulic 

and Neutronic 
Characteristics

• Physical actuator 
constraints

Action
𝐴𝐴𝑎𝑎 

Multi-objective Reward
𝑅𝑅𝑎𝑎 

NPP State
𝑆𝑆𝑎𝑎 

𝑅𝑅𝑎𝑎+1 

S𝑎𝑎+1 

• Reward for meeting power demand (revenue)
• Penalties for violating soft constraints (wear/tear)
• Severe penalty for violating hard constraints (safety)

Lower-level 
Controllers 

(PID, on/off)
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• Chance-constrained optimization:
max
𝜋𝜋

𝔼𝔼𝑎𝑎𝑛𝑛~𝜋𝜋,𝑙𝑙𝑛𝑛~𝐷𝐷𝑠𝑠 �
𝑝𝑝=0

𝐻𝐻−1
𝑟𝑟0 𝑠𝑠𝑝𝑝,𝑎𝑎𝑝𝑝

𝑠𝑠. 𝑡𝑡.  Pr �
𝑝𝑝=0

𝐻𝐻−1

(𝑠𝑠𝑝𝑝∈ 𝒳𝒳𝑙𝑙𝑎𝑎𝑠𝑠𝑝𝑝) ≥ 1 − 𝐾𝐾𝛿𝛿

• Intractable, reformulate by applying Boolean Algebra and DeMorgan’s law
 

max
𝜋𝜋

𝔼𝔼 �
𝑝𝑝=0

𝐻𝐻−1
𝑟𝑟0 𝑠𝑠𝑝𝑝,𝑎𝑎𝑝𝑝

𝑠𝑠. 𝑡𝑡.  �
𝑝𝑝=0

𝐻𝐻−1

Pr 𝑠𝑠𝑝𝑝 ∉ 𝒳𝒳𝑙𝑙𝑎𝑎𝑠𝑠𝑝𝑝 ≤  �
𝑝𝑝=0

𝐻𝐻−1

�
𝑝𝑝∈[𝐾𝐾]

Pr(𝐶𝐶𝐶𝐶 𝑠𝑠𝑝𝑝 = 1) ≤ 𝐾𝐾𝛿𝛿

• 𝔼𝔼 ∑𝑝𝑝=0𝐻𝐻−1 𝑟𝑟𝑝𝑝 𝑠𝑠𝑝𝑝,𝑎𝑎𝑝𝑝 ≤ 𝛿𝛿,∀𝐶𝐶 ∈ 𝐾𝐾 ⟹ ∑𝑝𝑝=0𝐻𝐻−1∑𝑝𝑝∈[𝐾𝐾] Pr(𝑟𝑟𝑝𝑝 𝑠𝑠𝑝𝑝,𝑎𝑎𝑝𝑝 ≥ 𝑐𝑐𝑝𝑝) ≤ 𝐾𝐾𝛿𝛿

Reinforcement Learning for 
Nuclear Power Plant Control

Reward

Safe state #constraints X 
violation probability

indicator function to track if the 
ith safety constraint is satisfied 
at sn

Easy to optimize
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Reinforcement Learning for 
Nuclear Power Plant Control
• Reward-constrained optimization:

max
𝜋𝜋

min
𝜆𝜆𝑖𝑖≥0

𝔼𝔼 �
𝑝𝑝=0

𝐻𝐻−1
𝑟𝑟0 𝑠𝑠𝑝𝑝,𝑎𝑎𝑝𝑝 − 𝜆𝜆𝑝𝑝𝑟𝑟𝑝𝑝 𝑠𝑠𝑝𝑝,𝑎𝑎𝑝𝑝  

• Actor-critic RL agent design
⏤ Value network:

⏤ Policy network:

𝑠𝑠 → MLP
MLP

𝑟𝑟1(𝑠𝑠)MLP
MLP

LSTM
𝑟𝑟0(𝑠𝑠)

𝑟𝑟2(𝑠𝑠)

𝑠𝑠 → MLPLSTM 𝒩𝒩(𝜇𝜇 𝑠𝑠 ,𝜎𝜎 𝑠𝑠 )

•Optimize policy parameters using gradient ascent to 
maximize rewards assuming 𝜆𝜆𝑝𝑝,∀𝐶𝐶 are fixed.
•On a slower timescale, optimize 𝜆𝜆𝑝𝑝,∀𝐶𝐶 using gradient 
descent on the original constraints
•Converges to a local saddle point

Lagrange multiplier 
for the ith constraint



43

Reinforcement Learning for 
Nuclear Power Plant Control
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Reinforcement Learning for 
Nuclear Power Plant Control
• Unseen power demand curve
• Constraints are imposed on the secondary loop (inlet and outlet temperatures at heat exchanger)

Without RL layer
With RL layer
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AI for Modeling, Optimizing, and Controlling
Complex Systems

General Atomics: DIII-D

Model

Optimize

Control

HPC Platforms

Argonne Tandem 
Linear Accelerator System

Atmospheric Radiation 
Measurement

AI



46

Advanced photon source – Argonne

Neuromorphic Hardware and Algorithms

A. Yanguas-Gil, J. Koo, S. Madireddy, P. Balaprakash, J. W. Elam, and A. U. Mane. "Neuromorphic architectures for edge 
computing under extreme environments." In 2021 IEEE Space Computing Conference (SCC), pp. 39-45. IEEE, 2021.
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Computing Continuum
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Remote Operations and Monitoring of 
Microreactors and the Opportunity for 
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Remote Operations and Monitoring of Microreactors and the 
Opportunity for ML/AI

What is a microreactor and what are the primary use cases?

Why remote monitoring and operation may be needed.

What challenges are introduced by remote operations and monitoring?

How can AI/ML help solve these challenges and what is INL pursuing to 
address these challenges?



What are Microreactors?

• Small size and power level: ~0.1 - 50 MWe*
• Factory fabricated
• Easily transportable to and from site
• Minimum site preparation
• Flexible operation
• High-degree of passive safety
• Operational lifetime: 5 – 20 yrs
• Technologies evolving from advances in 

materials, space reactor technologies, 
advanced nuclear fuels, and modeling & 
simulation

• Well suited for remote areas and 
applications:

• Remote communities
• Isolated microgrids
• Mining sites
• DOD applications

• Broadly distributed, reliable, energy sources

Microreactors are integrated systems 
that can be based on a range of 

reactor technologies
*Infrastructure and Jobs Act of 2021



Economics of Remote Operation and Monitoring



Is there precedence for remote operations and monitoring of 
nuclear reactors?
• Emergency Response Data System (ERDS) is one US nuclear specific 

precedence
− Direct real-time transfer of data from licensee plant computers to the Nuclear 

Regulatory Commission (NRC) Operations Center
− Does not afford control as it is intended to support emergency response 

planning and reporting

NUREG-1394, Revision 2



Is there precedence for remote operations and monitoring of 
nuclear reactors?

Extensive analogous industries with 
geographically distributed control 
systems.

− Electric grid (existing methods, 
smart grid communication, 
advanced modelling)

− Distributed Energy Resources 
(DER)

− Oil and gas 
− Aerospace 
− Military unmanned vehicles (aerial 

and land based)

Architecture of Distributed Wind integrated 
into larger DER plants and facilities

Image Source: INL/EXT-21-62264 Revision 0



Remote operations and monitoring challenges

Ground Rules for Regulatory Feasibility of Remote Operations of Nuclear Power Plants
• Nuclear Regulator Research Initiative Report 
• Identified 8 Focus Areas

1. Human Factors
2. Operations
3. Inspections
4. Risk
5. Information Exchange
6. Cybersecurity
7. Physical Security
8. Legal

• Within these 8 focus areas the NRC has identified high-level items that are crucial for feasible 
remote operations – “Ground Rules”

• Items important for achieving ground rules – “Key Attributes”
• Summarized as 11 Key findings which are expressed from the NRC’s perspective

https://www.nrc.gov/docs/ML2129/ML21291A024.pdf


NRC Key Findings

1. Remote operations criteria should be part of the design and development process from 
the beginning.

2. The public’s risk perception must be addressed by appropriately conveying societal 
impacts and accurate safety precautions that ensure public safety.

3. Changes to regulations are expected and must be addressed as needed (Part 53 will 
address some aspects, but others may require additional or altered regulations).

4. Guidance on acceptable approaches to meet regulations shall use technology-neutral and 
performance-based acceptance criteria.

5. “Minimal risk conditions” representing safe plant conditions following a credible initiating 
event must be identified with safe and stable shutdown being the predominately expected 
outcome.



NRC Key Findings continued

6. Data and voice communication infrastructure and security are critical for remote 
operations and should be central during the design and development process.

7. Remote operator responsibilities should be based on automation levels and “minimal risk 
conditions” human intervention and time requirements.

8. Operator licensing will be necessary, but due to high levels of automation and inherent 
safety functions the level of training and licensing oversight is expected to be reduced.

9. A local crew based onsite or nearby to sever emergency quick response functions has 
been deemed unavoidable.

10. Physical and cybersecurity inspections are necessary for both the site and control 
room facilities, with anticipated possible shifts towards remote inspection capabilities.

11. Physical security will be required at both the site and remote control room facilities. 

Opportunity 
for AI/ML



• For remote operation and monitoring of 
reactors to be possible, it is envisioned 
that full automation of the reactor 
control system will be required.

• Full automation of a reactor control 
system is a complex task, as detailed 
models of the reactor system are 
required. 

• AI/ML has significant potential to 
supplement this modeling and control 
system development required for 
automated control.
− Data-based control
− Surrogate modeling

Level Human/Machine Interoperability
0 No 

Automation
Manual control: the operator makes all decisions and performs 
all actions

1 Operator 
Assistance

Operator sets the desired state for a given component. The 
automated system maintains the given state until directed 
otherwise.

2 Automation 
by Consent

Operator defines optimal conditions for a system of multiple 
components. The automated system operates within the 
conditions. The system is closely monitored by operators; they 
approve actions when requested, provide fallback, and can 
intervene with commands.

3 Automation 
by 
Exception

Automated reactor operation system (AROS) performs tactical 
and operational tasks in specific and limited operational 
domains. Upon request, an operator must approve tactical and 
operational decisions and provide fallback

4 High 
Automation

AROS provides sustained operational and tactical control and 
fallback in semi-limited operational domains. A fallback-ready 
reactor supervisor familiar with AROS is required on-site.

5 Full 
Automation

AROS provides sustained operational and tactical control and 
fallback in all operational domains:
One-way communication: remote reactor supervisor monitors 
operations
Two-way communication: remote reactor supervisor monitors 
operations and provides strategic commands as necessary

Proposed levels of automation for nuclear reactor operations [1]

[1] A. Alberti, V. Agarwal, I. Gutowska, C. Palmer, C. de Oliveira, “Automation Levels for Nuclear 
Reactor Operations: A Revised Perspective,” Progress in Nuclear Energy, 157, pp.1-12 (2022). 

Remote Operation Enabling Technologies:
Automated Operation



Remote Operation Enabling Technologies:
Automated Operation
Autonomous Control for Reactor Technologies
• A data-driven model predictive control (MPC) system was developed by INL 

researchers to enable the self-regulating capability of nuclear microreactors.
• Data-riven modeling methods allow us to create models the complex physics of 

a reactor suitable for running real-time controllers.
• More details will be provided by Dr. Linyu Lin in a later session.



Remote Operation Enabling Technologies:
Security and Operator Augmentation

60

Resilient Remote Operation of 
Microreactors and Fission Batteries
• Construct a digital twin-based 

measurement and command 
verification system.

Level Human/Machine Interoperability
5 Full 

Automation
AROS provides sustained operational and tactical control and 
fallback in all operational domains:
One-way communication: remote reactor supervisor monitors 
operations
Two-way communication: remote reactor supervisor monitors 
operations and provides strategic commands as necessary

Proposed levels of automation for nuclear reactor operations [1]

[1] A. Alberti, V. Agarwal, I. Gutowska, C. Palmer, C. de Oliveira, “Automation Levels for Nuclear 
Reactor Operations: A Revised Perspective,” Progress in Nuclear Energy, 157, pp.1-12 (2022). 

• How does the remote operator know that data 
they are seeing on the screen is the true state 
of the reactor.

• How does the reactor know that a command 
received from the remote operator is authentic 
and safe?

• Option 1: Rely on existing cybersecurity, 
encryption and communication protocol to 
ensure integrity of data transmitted.

• Option 2: Leverage AI/ML-enhanced digital 
twins of the reactor to evaluate reactor 
commands and measurements for 
authenticity and safety.



Resilient Remote Operation of Microreactors and Fission Batteries

Project Hypothesis
A major unresolved technical challenge to the full 
deployment of microreactors and fission batteries is 
a reliable, resilient, and secure remote operations 
and monitoring capability.

Proposed Work Tasks
1. Identify operator, control, and signal 

monitoring and verification needs unique to 
remote operation and monitoring. 

2. Define a safe, secure, and resilient 
communications architecture that meets the 
needs of remote operation.

3. Develop a digital twin-based cybersecurity 
and operator augmentation system to 
enhance operational resilience.

4. Provide simulation and physical 
demonstrations of remote operation 
capabilities.

Can we leverage AI/ML-informed digital 
twins to enhance the resiliency of remote 

monitoring and operations?

Remote 
Microreactor

Remote 
Operator

Communications 
and 

Cybersecurity

Digital 
Twins



Concluding thoughts on the remote operation and 
monitoring of microreactors and the opportunity for AI/ML

• The primary application of microreactors is in remote locations with limited 
infrastructure.

• The remote nature of these sites makes traditional on-site operation and 
monitoring of these reactors expensive and difficult.

• Remote monitoring and operation creates a number of technical challenges, 
some of which could see their solution reside in the application of AI and ML, 
primarily in the development of data driven reactor models.

− Reactor Control Automation

− Security and Operator Augmentation
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Outline
• Underlying Philosophy

• Model Based Control

• Applications
• Basic approach
• Enhancing Linear Time Invariant Models
• Hybrid Control Drum Reactivity Worth Model

• Summary
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Underlying Philosophy
This establishes the “world-view” from which we approach problem solving
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Reduced Order Model Methods for Real-Time Applications
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• Analytic Models

• Approximate 
Models

• High-fidelity

• Empirical/
Surrogate 
Models

• Monte Carlo 
methods

• Bayesian 
Calibration

Physics Based Statistical Data-Driven Mathematical
Machine “Learning” Artificial Intelligence

Have full knowledge of 
nicely behaved PDE

Coefficients are Hard Here’s a bunch of numbers What’s the equation 
for “is this a cat?”

• Regression
• Principal 

Component 
Analysis

• SVD

• Dynamic Mode 
Decomposition

• Neural 
Networks

• Autoencoders
• Bayesian 

Networks

KNOWLEDGE OF PHYSICS

CO
M

PL
EX

IT
Y



Don’t be stupid
Don’t be lazy

Use the equations you have

(only use ML judiciously, and as a last option)
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Guiding Principles



All the hammers in the toolbox
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• Analytic Models

• Approximate 
Models

• High-fidelity

• Empirical/
Surrogate 
Models

• Monte Carlo 
methods

• Bayesian 
Calibration

Physics Based Statistical Data-Driven Mathematical
Machine “Learning” Artificial Intelligence

Have full knowledge of 
nicely behaved PDE

Coefficients are Hard Here’s a bunch of numbers What’s the equation 
for “is this a cat?”

• Regression
• Principal 

Component 
Analysis

• SVD

• Dynamic Mode 
Decomposition

• Neural 
Networks

• Auto-encoder
• Bayesian 

Networks

KNOWLEDGE OF PHYSICS

CO
M
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Model Based Control
(Warning math ahead!)
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Model Based vs Model Free

Model Based
• Some representation of the physics

• Most model based controllers use
a state-space representation

• �̇�𝑥 𝑡𝑡 = 𝐴𝐴𝑥𝑥 𝑡𝑡 + 𝐵𝐵𝐵𝐵 𝑡𝑡
• Differences in model based control 

involve how model is used and 
definition of the optimization 
problem

• Model predictive control, Linear 
Quadratic Regulators, 𝐻𝐻∞

Model Free
• No (direct) physics in the 

model/controller
• Example proportional-integral-

derivative
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𝐵𝐵 𝑡𝑡 = 𝐾𝐾𝑝𝑝𝑒𝑒 𝑡𝑡 + 𝐾𝐾𝑝𝑝 �
0

𝑎𝑎
𝑒𝑒 𝜏𝜏 𝑑𝑑𝜏𝜏 + 𝐾𝐾𝑝𝑝

𝑑𝑑𝑒𝑒(𝑡𝑡)
𝑑𝑑𝑡𝑡



State-Space Representations
• 𝐴𝐴 System Matrix

• Describes time evolution of state-space
• Example: Point Kinetics equations

• 𝑥𝑥 state-space
• Describes the unknowns of the system
• Example: power, reactivity, delayed neutron precursor 

concentrations

• 𝐵𝐵 input vector
• Control actions to perform
• Example: control rod/drum drive position/speed

• 𝐵𝐵 input matrix
• Maps inputs to state-space
• Example: control rod/drum reactivity worth curves

• 𝑦𝑦 output vector
• What you measure in your system
• Example: core average temperature

• 𝐶𝐶 Output Matrix
• Relationship between state-space and output vector
• Example: How core average temperature is computed 

from
point reactor model unknowns (e.g., power or 
moderator temperature)

• 𝐷𝐷 Feedthrough Matrix
• doesn’t apply to reactor control problems (it’s 0)

• Lots of variations
• Continuous (𝑥𝑥(𝑡𝑡),�̇�𝑥(𝑡𝑡)) vs Discrete (𝑥𝑥(𝑘𝑘),𝑥𝑥(𝑘𝑘 + 1))
• Time invariant (𝐴𝐴) vs Time varying (𝐴𝐴(𝑥𝑥))
• Linear and nonlinear (𝐴𝐴(𝐵𝐵, 𝑥𝑥), 𝐴𝐴(𝐵𝐵), 𝐴𝐴(𝑥𝑥))
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Continuous Linear Time Invariant
�̇�𝑥 𝑡𝑡 = 𝐴𝐴𝑥𝑥 𝑡𝑡 + 𝐵𝐵𝐵𝐵 𝑡𝑡
𝑦𝑦 𝑡𝑡 = 𝐶𝐶𝑥𝑥 𝑡𝑡 + 𝐷𝐷𝐵𝐵 𝑡𝑡

Discrete Linear Parameter varying
𝑥𝑥 𝑘𝑘 + 1 = 𝐴𝐴(𝑝𝑝)𝑥𝑥 𝑘𝑘 + 𝐵𝐵(𝑝𝑝)𝐵𝐵 𝑘𝑘

𝑦𝑦 𝑘𝑘 = 𝐶𝐶(𝑝𝑝)𝑥𝑥 𝑘𝑘



Point-Reactor State-Space Representations
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Point Kinetics

Two-Temperature

Xenon/Iodine

Reactivity

Control Rod Worth



Point-Reactor State-Space Representations
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Point Kinetics

Two-Temperature

Xenon/Iodine

Reactivity

Control Rod Worth

𝑥𝑥 𝑘𝑘 + 1 = 𝐴𝐴𝑥𝑥 𝑘𝑘 + 𝐵𝐵𝐵𝐵 𝑘𝑘
𝑦𝑦 𝑘𝑘 = 𝐶𝐶𝑥𝑥 𝑘𝑘



Applications
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The Basic Approach
• Use ML to create nonlinear corrections to simplified,

linearized models
• Real problems are nonlinear (to varying degrees)
• Most numerical methods for nonlinear problems make use of linearizations 

(but can lack robustness or are too expensive
for real-time)

• Linear models are well understood (mathematically, physically, etc.) and are 
simple enough to be “textbook” examples in many cases. They also facilitate 
real-time calculations and can be used by controllers
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Enhanced Linear Time Invariant Models
(Point-Reactor Model with Model Predictive Control)
• What is the problem?

• Model is linear time invariant
• and it is linearized about the initial 

condition
• parameters change

• Model has no spatial dependence

• Let us use ML to intentionally 
correct the known limitations
of the model
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𝑥𝑥 𝑘𝑘 + 1 = 𝐴𝐴𝑥𝑥 𝑘𝑘 + 𝐵𝐵𝐵𝐵 𝑘𝑘 +?
𝑦𝑦 𝑘𝑘 = 𝐶𝐶𝑥𝑥 𝑘𝑘



Enhanced Model Based Control
(Point-Reactor Model with Model Predictive Control)
• Look at elements of A and see how

they change as function of time

• Use Gaussian Process Regression to learn
elements of 𝐴𝐴 that are nonlinear

• New state-space model
with correction
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𝑥𝑥 𝑘𝑘 + 1 = 𝐴𝐴 + �̃�𝐴 𝑘𝑘 𝑥𝑥 𝑘𝑘 + 𝐵𝐵𝐵𝐵 𝑘𝑘
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Enhanced Model Based Control
(Point-Reactor Model with Model Predictive Control)
• Look at elements of A and see how

they change as function of time

• Use Gaussian Process Regression to learn
elements of 𝐴𝐴 that are nonlinear

• New state-space model
with correction
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𝑥𝑥 𝑘𝑘 + 1 = 𝐴𝐴 + �̃�𝐴 𝑘𝑘 𝑥𝑥 𝑘𝑘 + 𝐵𝐵𝐵𝐵 𝑘𝑘
𝑦𝑦 𝑘𝑘 = 𝐶𝐶𝑥𝑥 𝑘𝑘



Enhanced Model Based Control
(Point-Reactor Model with Model Predictive Control)
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Hybrid Control Drum Reactivity Worth Model
• Control drums (and rods) have differential 

reactivity worth that varies with position
• There are also nonlinear effects

between the drums (shadowing effect)
• More accurate prediction of drum worth will 

lead to better control action
• We may want to move control drums 

individually 
• Model Predictive Control supports multiple 

control inputs
• Challenges

• A point reactor model neglects the
spatial dependence

• Difficult to capture the nonlinear effects 
between control drums
(but these are first order effects!)

• Calculating all the possibilities directly is time 
consuming (a little more than 7 cpu years)
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Hybrid Control Drum Reactivity Worth Model
• Use First Order Perturbation

Theory as a starting point
• No spatial dependence
• Not easy to incorporate

effects between drums
• It ignores higher order effects

• Extend First Order Perturbation
Theory with statistical regression

• Write total core reactivity as a
linear combination of first order models

• Solve for coefficients of linear
combination by regression
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https://doi.org/10.1016/j.anucene.2021.108903
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Summary
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Summary
• Using simple models and ML to correct known 

approximations/limitations can work well
• We used it here to capture combinations of nonlinear effects

in two different settings
• This was better than “brute force” (in the case of control drums)
• Issues of explainability and training bias that are inherent in any AI approach 

are not present here

• Don’t throw the physics out with Archimedes’s bathwater.
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Summary
• Using simple models and ML to correct known 

approximations/limitations can work well
• We used it here to capture combinations of nonlinear effects

in two different settings
• This was better than “brute force” (in the case of control drums)
• Issues of explainability and training bias that are inherent in any AI approach 

are not present here

• Don’t throw the physics out with Archimedes’s bathwater.
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Questions?

4/27/2023 Kochunas – ML for Model-based Control – AI/ML Symp. 11.0 87



Backup
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State-Space Model
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Sensitivities on Reduced Order Model Parameters

• Even though observer may correct some 
degree of error, MPC still needs to have 
a reasonable ROM for accurate and 
stable simulation results

• Control drum differential worth and 𝛽𝛽𝑝𝑝 
have larger sensitivities than other 
parameters

• ROM parameters may have pretty large 
margin (30%)

• Standard MPC causes large error since it 
cannot predict time-varying component
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Adaptive MPC vs. Standard MPC
• Ignoring time-varying elements in standard MPC may degrade accuracy
• Successive linearization in adaptive MPC can consider these nonlinearity in ROM
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Standard Adaptive Time-varying elements from 
Adatpive MPC



Multi-Objective Optimization of Microreactor 
Control Drum Operation
• Problem

• For real time control how do I accurately 
determine an optimal control drum 
configuration to meet reactivity 
requirements, peaking requirements, and do 
so robustly?

• Our Solution
• Multi-objective optimization with 

scalarization and moth flame optimization
• Result

• Capable of configuring 8 drums to match a 
desired reactivity, while satisfying quadrant 
power tilt ratio, even when you have a 
struck drum

• Value
• Near real-time method for robust reactivity 

control of microreactors

4/27/2023

Optimal Control Drum
Positioning Reached

Optimal solution solved with high-fidelity Monte Carlo
(~50 pcm off critical QPTR within 0.001)

Works with Stuck Drums
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Autonomous Control with ML/AI for 
Microreactors: Opportunity and 

Challenge

Linyu Lin 
Joseph Oncken 
Vivek Agarwal



Self-Regulating Microreactor

• Very small (<50MWe) reactors for non-conventional nuclear markets

• Self-regulating requires remote and semi-autonomous microreactor operations
− Reduced number of specialized operators onsite
− Load following capability 

94

There are significant needs for research and 
development support for transferring from operator-

centric to autonomous-enabled control room



Anticipatory Control
• Anticipatory control strategy for establishing 

technical basis of self-regulating microreactors
− Proactively respond to disturbances and find 

optimal control actions to meet operational goals.
− Explicitly incorporate and handle constraints by 

system dynamics, operational and safety 
requirements.

• Data-driven approaches for adapting systems to 
different testing systems and operational 
features
− Expressive power: representing complex 

systems with nonlinear dynamics. 
− Modularity: system components can be 

separated and recombined. 
− Adaptability: flexible model forms and 

parameters
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Given the complexity of nuclear energy systems, anticipatory 
control strategy shows better capabilities in achieving (semi-) 

autonomous operations for microreactors



Anticipatory Control with Plant Simulator
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Anticipatory Control

• Data-Driven Model Predictive Control (MPC) as an implementation of anticipatory control strategy

• Process model with data-driven methods
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𝐽𝐽∗ = min
𝑈𝑈

∑𝑘𝑘=1𝑁𝑁 𝑙𝑙 𝑥𝑥𝑘𝑘|𝑗𝑗 ,𝐵𝐵𝑘𝑘|𝑗𝑗 Optimization
subject to 𝑥𝑥𝑘𝑘+1|𝑗𝑗 = 𝑓𝑓 𝑥𝑥𝑘𝑘|𝑗𝑗 ,𝐵𝐵𝑘𝑘|𝑗𝑗 Process Model

𝑈𝑈 = 𝐵𝐵1|𝑗𝑗 , … ,𝐵𝐵𝑁𝑁|𝑗𝑗 ∈ 𝐔𝐔𝑝𝑝 for all 𝐶𝐶 = 1, … ,𝑛𝑛𝑎𝑎𝑢𝑢 Constraints on range, magnitudes, and derivatives 
of control actions and state variables𝑋𝑋 = 𝑥𝑥1|𝑗𝑗 , … , 𝑥𝑥𝑁𝑁|𝑗𝑗 ∈ 𝐗𝐗𝑝𝑝  for all 𝐶𝐶 = 1, … ,𝑛𝑛𝑎𝑎𝑥𝑥

𝑥𝑥0|𝑗𝑗 = 𝑥𝑥𝑗𝑗 Initial conditions at every shifted time window

𝑥𝑥𝑘𝑘+1|𝑗𝑗 = 𝑓𝑓 𝑥𝑥𝑘𝑘|𝑗𝑗 ,𝐵𝐵𝑘𝑘|𝑗𝑗 ,𝑤𝑤𝑗𝑗 ± 𝛿𝛿

State-space model 
by SINDYc

AI/ML models

Approximated by

Compared to linear state-space model, AI/ML models offer 
opportunities of better capturing nonlinear system dynamics

Sparse Identification of Nonlinear Dynamics with Controls (SINDYc) is a data-driven system identification method 
for nonlinear dynamical system with inputs and forcing using regression methods

Feedforward neural network (FNN)

Recurrent neural network (RNN)



Case Study #1

• All model predictive controllers (MPCs) have the same settings except for different modeling 
approaches
− More fluctuated predictions from AI/ML models than the state-space model identified by SINDYc
− NN-based MPCs better track sharp changes (nonlinear behaviors) in setpoints.
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Models in MPC Errors in tracking reference setpoints

𝑻𝑻𝒆𝒆 𝑻𝑻𝒄𝒄
SINDYc State-Space 39.50 17.89

Feedforward Neural Net 27.54 11.63

Recurrent Neural Net 16.03 8.56



Online Updating and Transfer Learning 

• Adaptable process model through online updating

• Most common incarnation of transfer learning in deep 
learning:
− Take layers from a trained model
− Freeze layers to avoid destroying trained information
− add new layers or free selected layers
− Train new layers or selected layers 

• Only necessary updates: 
− Update only when large discrepancy is detected. 
− Update only when a sufficient amount of data is 

collected.
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“Trainable”: Updated 
based on new data

“Untrainable”: Fixed for remembering 
training information 

𝑥𝑥𝑘𝑘+1|𝑗𝑗 = 𝑓𝑓 𝑥𝑥𝑘𝑘|𝑗𝑗 ,𝐵𝐵𝑘𝑘|𝑗𝑗 ,𝑤𝑤𝑗𝑗 ± 𝛿𝛿

Instead of a “frozen” model, AI/ML models also offer 
opportunities in adapting to new (sensor) data. 

Reduce model errors by 
continuously learning from new data



Case Study #2

• Used a two-layer Feedforward Neural Net as 
the surrogate of the baseline reactor model
− FNN is updated with discrepancy between 

predicted and measured powers exceeds a 
limit (marked by   ). 

− Optimize updating strategies for better 
performance.
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Surrogate models RMSE (W)

Prediction errors

FNN without update 510
+ FNN with online updates 223.5

+ Optimized online updating strategy 130.5
Target (ground-truth) model 0.0

Discrepancy between 
target and achieved 

power rates

FNN without update 649.9
+ FNN with online updates 214.7

+ Optimized online updating strategy 178.7
Target (ground-truth) model 168.2

• Improved performance 
with online updating
− Prediction accuracy is 

improved by 74%

− MPC performance is 
improved by 70%



Challenges

• Model validation and uncertainty quantification for autonomous control.
− Quality of model input data (cyber incidents, sensor biases and noises)
− Predictive capability of surrogate models (interpolated vs. extrapolated)
− Solvability of control problems

• Physical tests
− Prototyping and testing system for control software
− Real-time processing and computations

Despite the nonlinear and adaptable control capabilities by 
AI/ML, physical tests and validations are currently the major 
barriers. 
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INL’s Science and 
Technology (S&T) Initiatives
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• These five strategic S&T Initiatives will contribute 
to changing the world’s energy future and securing 
our critical infrastructure.

• These initiatives build on INL’s research, 
development, and demonstration leadership in 
nuclear energy to advance a vision of a low-
carbon energy future that fully realizes the game-
changing potential of nuclear energy.



Fission Battery Initiative
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Vision: Developing technologies that enable nuclear reactor systems to function 
as batteries.
Outcome: Deliver on research and development needed to provide technologies 
that achieve key fission battery attributes and expand applications of nuclear 
reactors systems beyond concepts that are currently under development.

Research and development to enable nuclear reactor technologies to achieve fission battery attributes 

Nuclear Reactor Sustainment 
and Expanded Deployment

Fission Battery
Attributes



Fission Battery Attributes
• Economic – Cost competitive with other distributed energy sources (electricity 

and heat) used for a particular application in a particular domain. This will enable 
flexible deployment across many applications, integration with other energy 
sources, and use as distributed energy resources.

• Standardized – Developed in standardized sizes, power outputs, and 
manufacturing processes that enable universal use and factory production, 
thereby enabling low-cost and reliable systems with faster qualification and lower 
uncertainty for deployment.

• Installed – Readily and easily installed for application-specific use and removal 
after use. After use, fission batteries can be recycled by recharging with fresh fuel 
or responsibly dispositioned.

• Unattended – Operated securely and safely in an unattended manner to provide 
demand-driven power.

• Reliable – Equipped with systems and technologies that have a high level of 
reliability to support the mission life and enable deployment for all required 
applications. They must be robust, resilient, fault tolerant, and durable to achieve 
fail-safe operation. 
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Unattended Operation of Fission Batteries

Unattended

Reactor 
Operation

Autonomous 
Controls

Sensors and 
Instrumentation

Digital Twin 
(AI/ML and 

M&S)
Remote Control 

/ Monitoring

Safeguards and 
Security

Safeguards by 
Design

Risk 
Assessment

Robotics / 
Drones

Structural 
Materials

Security by 
Design

Cyber-informed 
Engineering

Advanced 
Wireless 

Technologies

Threats, 
Vulnerabilities, 

and 
Consequences



LDRD: Scalable Hybrid Modeling with Anticipatory Control 
Strategy for Autonomous Operation of Modular and Microreactor

• ACORN controller provides 
optimal control actions for 
microreactor under different 
scenarios and external 
uncertainties

• Steady state  and 
transient operations

• Flexible operation (load 
following)

• Failure or degraded 
operation

• First-of-a-kind anticipatory controller Autonomous Control fOr Reactor technology (ACORN) 
to achieve autonomous control of microreactors 

• Leverages and expands INL’s modeling and simulation capabilities like DireWolf and BlueCRAB 
for capturing microreactor thermal and neutronic performance

ACORN advances the level of automation to address the unattended 
attribute of the Fission Battery Initiative. This advancement also accounts 

for economics of operation of microreactors.



LDRD: Resilient Remote Operation of Microreactors and Fission 
Batteries

Project Hypothesis
A major unresolved technical challenge to the full 
deployment of microreactors and fission batteries is 
a reliable, resilient, and secure remote operations 
and monitoring capability.

Proposed Work Tasks
1. Identify operator, control, and signal 

monitoring and verification needs unique to 
remote operation and monitoring. 

2. Define a safe, secure, and resilient 
communications architecture that meets the 
needs of remote operation.

3. Develop a digital twin-based cybersecurity 
and operator augmentation system to 
enhance operational resilience.

4. Provide simulation and physical 
demonstrations of remote operation 
capabilities.

Can we leverage AI/ML-informed digital 
twins to enhance the resiliency of remote 

monitoring and operations?

Remote 
Microreactor

Remote 
Operator

Communications 
and 

Cybersecurity

Digital 
Twins
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LDRD: Development of Lightweight Structural Materials with 
Improved Properties for Fission Batteries 
• The geometry of the printed test piece was 

determined. The printed piece is expected to be able 
to be directly used for mechanical testing with 
minimal machining.

• nTopology can successfully mesh the unit cell, cell 
wall, shell, and lattice type.

• A process was successfully developed for 
transforming lattice structure data to MOOSE input.

• Simulated macro/engineering scale tensile behavior 
(Effective elastic modulus/ yield stress):
− Cell size: minimal effect
− Smooth radius: has effect
− Weight saving: obvious effect

• Simulated micro scale mechanical behavior 
(localized response) needs to be analyzed for 
different structures under different testing conditions.

Interface with MOOSE

Different lattice type





INL Summer 2023 AI/ML Symposium (S23S)

• As a continuation of the INL Summer Symposium series, we will host the S23S artificial intelligence (AI) and 
machine learning (ML) symposium this summer starting in June.

• Participants will have the opportunity to understand and apply concepts related to AI and ML.

• Over seven 1.5-hour sessions, we will explore a variety of current topics within the AI/ML community.

• This exploration will focus on applications but will also investigate the theory behind these topics and provide 
a framework for demonstrating the concepts. 

• This professional development opportunity is available to INL staff and interns. The sessions will be held on 
Thursdays from 1:00 to 2:30 p.m. MDT from June 1 to July 20 (skipping the 4th of July week).

• We will be capping off the symposium on July 27th with an AI/ML Expo to be held in EIL.

June 1 June 8 June 15 June 22 June 29 July 13 July 20
Data Prep – How to 
clean, filter, and 
prepare data to be 
used by a machine 
learning model.

Review of S21S, including 
how to request HPC 
access and how to use 
Jupyter Notebooks inside 
of the HPC enclave.

Imbalanced 
Classification 
and strategies

Generative 
Adversarial 
Networks

ChatGPT Attention and 
Transformers

Anomaly 
Detection

S23S is being led by Cody Walker, Jacob Farber, and Shad Staples.
For more information or to register please contact Shad Staples.

mailto:shad.staples@inl.gov
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