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Jl Voving from Symposium 1.0 to 2.0 to 3.0

An April, INL sponsored a symposium on Artificial Intelligence (Al) and Machine
Learning (ML) approaches and activities related to science and engineering

IThe Al. 0 Symposi umoto-iNbactvittes ahd capabilities t er n a
I Eleven speakers discussed a variety of current topics and future applications
I Over 200 INL staff participated in the symposium

A For Symposium 2.0 we engagement with industry and universities

1 It was noted that Al/ML will be a key technology moving forward as we
continue our R&D

A Today, for Symposium 3.0, we will be focusing on nuclear-related applications
using Al/ML
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Remote Visual Inspections with Unmanned Aerial Systems

ABenefits during data collection
¢ Saves time
¢ Reduces costs
¢ Increases safety
¢ Provides better inspection data record

Alncreased burden on analysis

¢ Large guantity of monotonous images
videos
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Data & Scope

AData from 2 containment buildingsZ,500 images)
¢ One complete inspection

¢ One partial inspection (demo) Object Count  Share
ANo standards for data collection yet S .
¢ Varying resolutions sackaround 2orr 6

¢ Varying distances & fields of view Tendon Cap 751 o
AFive damage types et
¢ May not have enough examples of all types =~ o
AlLabeled with polygon masks Pattem Cracking 1%
ASeguential Iimages : Z
Honeycom 2

¢ Multiple views of same physical defect
¢ Prone to data leakage
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Approaches

Classification Defect Localization

A Presence/absence of each damage type A Provides a mask to localize the object in
In an imagdile the image

A Lighter, faster A Heavier, slower

Efforescenceun «iii.., ¢ 'c..'

‘Hlorescence
Efflorescer iy rascence
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Preliminary Results

Classificationtile level) ACAUTION:
P | ~n [ TP | TN [ FP | FN | Recall | Precision| FCR | WOFk—iﬂ-pFOQFESS!

Corrosion 75 4509 61 3863 646 14 0.81 0.09 0.14

Crack 383 4201 294 2227 1974 89 0.77 0.13 0.47 C FirSt'CUt models

2=y 292 4292 239 4160 132 53 0.82 0.64 0.03

CEEERSIEIDE 282 4302 179 4003 299 103 0.63 0.37 gg; C ASSGSS m e nt u n d e rwa

Sefect | ocaliration - ARecall biased results
efeCtl LoCallZallOlnstance level) ¢ This may be a recatiased

licat
—— application

Corrosion 21 18 0.86 0.36 0.51

Crack 138 123 125 15 0.89 0.50 0.64 C False Ca” rate (FCR) typICa”y

Efflorescence 208 192 127 16 0.92 0.60 0.73

Grease Stain 60 49 106 11 0.82 0._32 O._46 |OW despite IOW preCiSion

Spall 35 0 0 35 0

* Classification and localization results above are not on AMost nOtable Cha”enges:
the same test data
¢ Cracks, spalls
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Going Forward

AODbtain more field datasets

¢ Better testing & performance assessment
ASynthetic Iimages

¢ Focused on less common damage types of interest
AModel optimization

¢ Parameter tuning

¢ Different classification models (or network depth) for different damage
classes

¢ Chalin classification & localization models
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