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Moving from Symposium 1.0 to 2.0 to 3.0

• In April, INL sponsored a symposium on Artificial Intelligence (AI) and Machine 
Learning (ML) approaches and activities related to science and engineering

− The “1.0 Symposium” focused on internal-to-INL activities and capabilities

− Eleven speakers discussed a variety of current topics and future applications

− Over 200 INL staff participated in the symposium

• For Symposium 2.0 we engagement with industry and universities

− It was noted that AI/ML will be a key technology moving forward as we 
continue our R&D

• Today, for Symposium 3.0, we will be focusing on nuclear-related applications 
using AI/ML
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Analysis of Containment 

Images for Concrete 

Degradation
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https://www.facebook.com/EPRI/
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Remote Visual Inspections with Unmanned Aerial Systems

▪ Benefits during data collection

– Saves time

– Reduces costs

– Increases safety

– Provides better inspection data record

▪ Increased burden on analysis

– Large quantity of monotonous images or 
videos

Can machine vision models help with analysis?

http://www.epri.com/
http://www.epri.com/
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▪ Data from 2 containment buildings (2,500 images)
– One complete inspection

– One partial inspection (demo)

▪ No standards for data collection yet
– Varying resolutions

– Varying distances & fields of view

▪ Five damage types
– May not have enough examples of all types

▪ Labeled with polygon masks

▪ Sequential images
– Multiple views of same physical defect

– Prone to data leakage

Data & Scope

http://www.epri.com/
http://www.epri.com/
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Approaches

Classification

▪ Presence/absence of each damage type 
in an image tile

▪ Lighter, faster

Defect Localization

▪ Provides a mask to localize the object in 
the image

▪ Heavier, slower

http://www.epri.com/
http://www.epri.com/
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Preliminary Results

Classification (tile level)

Defect Localization (instance level)

Population TP FP FN Recall Precision F1

Corrosion 21 18 32 3 0.86 0.36 0.51

Crack 138 123 125 15 0.89 0.50 0.64

Efflorescence 208 192 127 16 0.92 0.60 0.73

Grease Stain 60 49 106 11 0.82 0.32 0.46

Spall 35 0 0 35 0 - -

P N TP TN FP FN Recall Precision FCR

Corrosion 75 4509 61 3863 646 14 0.81 0.09 0.14

Crack 383 4201 294 2227 1974 89 0.77 0.13 0.47

Efflorescence 292 4292 239 4160 132 53 0.82 0.64 0.03

Grease Stain 282 4302 179 4003 299 103 0.63 0.37 0.07

Spall 124 4460 90 3299 1161 34 0.73 0.07 0.26

▪ CAUTION:
Work-in-progress!
– First-cut models

– Assessment underway

▪ Recall biased results
– This may be a recall-biased 

application

– False call rate (FCR) typically 
low despite low precision

▪Most notable challenges:
– Cracks, spalls

* Classification and localization results above are not on 
the same test data

http://www.epri.com/
http://www.epri.com/
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Going Forward

▪ Obtain more field datasets

– Better testing & performance assessment

▪ Synthetic images

– Focused on less common damage types of interest

▪Model optimization

– Parameter tuning

– Different classification models (or network depth) for different damage 
classes

– Chain classification & localization models

http://www.epri.com/
http://www.epri.com/
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http://www.epri.com/
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Fiber Sensor Enabled Big Data Analytics
Reel-to-Reel Fabrication of Radiation-Harden Fiber Sensors

⚫ Femtosecond/UV lasers sensor fabrication

⚫ Highly flexible for all fibers (silica/sapphire)

⚫ Reel-to-reel fabrication through fiber jackets

⚫ Over 1000 sensors can be continuously fabricated

⚫ Extreme temperature and radiation stable 

⚫ Hydrogen stable

⚫ Cross-cutting applications for all energy sectors

Solid-Oxide Fuel Cells



Fiber Sensor Applications in Nuclear Energy

⚫ High spatial resolution 

measurements

⚫ Withstand extreme radiations

⚫ 1.41014 fast neutron/s/cm2

⚫ 300 days exposure 

⚫ Temperature 650oC

⚫ Perform temperature profile 

measurement in MITR 

⚫ 1-cm spatial resolution 

⚫ 1.6 meter T profile 

⚫ Perform transient T 

measurements



Why We need A.I. : Temporal Analysis

A.I. Data Analytics for Temporal Analysis of Fiber Sensors Sensor Drift Prediction Using Bayesian Learner 

⚫ To address sensor drift 

⚫ To perform classification for reactor anomaly

⚫ Successfully addressing sensor drift to 98.4% 

⚫ Trigging anomaly warning within 4oC T changes



A.I. for Spatial/Temporal Data Analysis

Pipeline Defect and Intrusion Detection and Classifications

⚫ Condition-Based Monitoring 

⚫ Large varieties of threats and 

pipeline defects 

⚫ Large varieties of pipe 

structures and configuration 

⚫ Requiring multitude 

measurements (T, strain, 

chemical)

⚫ Requiring high spatial 

resolution information

⚫ Requiring high temporal 

resolutions



Distributed Fiber Sensor Enabled Big Data Analytics 
for Pipeline Monitoring

Distributed Acoustic Sensing (DAS) System with Rayleigh Enhancement

⚫ -OTDR based DAS based on 3x3 demodulation scheme

⚫ SNR enhancement by femtosecond laser enhanced Rayleigh backscattering (>35dB enhancement)

⚫ Radiation-resilient and high-T stable 

⚫ Highly adaptable for complex structures & harsh environments (corrosion etc.)

⚫ High spatial resolution measurements

⚫ High bandwidth measurement (100 kHz)



Distributed Fiber Sensor Enabled Big Data Analytics 
for Pipeline Monitoring

Time-domain acoustic phase signals measured by 7 sensors with (a) healthy, and (b) 8-mm defective elbows

⚫ Changes of phase signals due to elbow connectors with different defect depths (0 ~ 8 mm)

⚫ Machine learning is efficient and effective to analyze minor variations in phase signals

(a) (b)



Identification of Extrinsic Acoustic Events

⚫ 4 types of hammer heads to mimic different 

external impact events & destructive effects

- Steel & aluminum (1.5 ~ 2 kHz)

- Plastic (< 1 kHz, 1.5 ~ 2 kHz) 

- Rubber (< 1 kHz)

⚫ Shallow & deep neural networks are trained 

to identify 4 external perturbation events

⚫ Useful for monitoring the intrusion process & 

the severity of those types of damages



Identification of Extrinsic Acoustic Events

⚫ Each classification runs 10 times to determine the 

uncertainty of data selection and obtain accuracy 

range 

⚫ Both can reach over 80% accuracy

Material Shallow Neural Network CNN

Rubber

80% − 100% 85% − 100%
Plastic

Aluminum

Steel

Classification result of 4 types of extrinsic acoustic sources



Identification of Intrinsic Structural Corrosion (7 cases)

⚫ Case 1: External corrosion, a trench on the 

outer wall

⚫ Case 2: Galvanic corrosion, loose connection

⚫ Case 3: Defect-free elbow connector



⚫ Case 4: 1 cutting groove

⚫ Case 5: 1 cutting groove with 3 drilling holes

⚫ Case 6: 2 cutting grooves

⚫ Case 7: 2 cutting groove with 6 drilling holes

⚫ Size information

- Groove: 1.5 in. (L)  0.25 in. (W)  0.08 in. (H)

- Hole: 0.125-in. diameter, 0.2-in. depth

Identification of Intrinsic Structural Corrosion (7 cases)



Identification of Intrinsic Structural Corrosion (7 cases)

Scenario Shallow CNN SOM

SOM 

+Softm

ax

Auto-

encoder

Autoenco

der+Soft

max

Normal

97.1%

−

100%

94.3%

−

100%

71.4%

−

83.3%

74.3%

−

85.7%

73.8%

−

84.5%

94.3%

−

100%

Loose

1 inner 

groove

1 inner 

groove and 3

holes

2 inner 

grooves

2 inner 

grooves and 

6 holes

1 external 

trench

⚫ 94% accuracy is achieved by supervised 

learning compared to >71% by unsupervised 

learning

⚫ Autoencoder+Softmax achieves over 94% 

accuracy



Hammer Impact DAS Response Simulation for 
Pipeline

(a) Pipeline assembly: Two long pipes and one 

short pipe joined with a T junction

(b) Sensors and hammer impact location (c) Groove defect (1mm thickness)

Figure1: Pipeline assembly, loading and sensor configuration

• Method: Transient Structural Analysis using Finite Element Modeling 

• Modal analysis was conducted to determine the natural frequencies of the model.

• An impact force of amplitude 1000 N and time duration 4 ms was applied to model a hammer impact. 

• The structural response of the model was obtained using a transient structural analysis. 



Hammer Impact DAS Response Simulation for Pipeline

(-----) indicates damaged response while (----) indicates healthy response.



Looking Ahead

⚫ Develop new fibers for through jacket sensor writing (Patent pending)

⚫ Develop and test fiber sensors to perform multitude measurements (DAS, Temperature, Flow)  

⚫ Develop fiber sensor with proper packaging for easy installation (Patent pending) 

⚫ Reduce cost of DAS/DTS interrogation systems based on modeling outcome

⚫ Perform extensive FEA modeling to simulate acoustic response for all type of defects 

⚫ Machine learning using combined data of experiment and simulation

⚫ Demonstrate pipeline testing in field



Machine Learning for 
Autonomous Drones Operations

Ahmad Al Rashdan, Ph.D.
Instrumentation, Control, and Data Science, NST, INL

Machine Learning & Artificial Intelligence Symposium

October 16, 2020



Drones Uses in a Nuclear Power Plant

• Operator rounds

• Security rounds

• Radiation Monitoring

• Inspections

• Surveys 

• Monitoring 

Drones can:

• eliminate/reduce the human role and save cost.

• increase activities frequency

• increase fidelity (broader sensory perspective)

• access hazardous locations



Drone Uses can Drive ML/AI Development 

• ML/AI can enable drones to perform 
visual functions:

− Classifying objects (e.g. gauges)

− Recognizing events (e.g. fire, 
leak, etc.) 

− Identifying objects (people, ladder, 
etc.) 

• ML/AI can enable drone to 
autonomously navigate in an 
environment.

− Route Operable Unmanned 
Navigation of Drones (ROUNDS)



Route Operable Unmanned Navigation of Drones 
(ROUNDS)



Route Operable Unmanned Navigation of Drones 
(ROUNDS)



Current Status



Benefits

• Drone agnostic- Currently using OTS drone (low cost)

• No additional hardware needed for the drone 

• QR codes are printed on A4 sheets- QR codes can be 

easily added for change of conditions

• Way points are fed through a mapping table or 

imbedded into the QR codes 

• Very accurate (few inches accuracy)

• Utilize external computational resource for analysis
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Dave Olack, Principal Technical Leader
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October 16, 2020

Analysis of Work Order 

Data for Cross-Utility Trends

http://www.epri.com/
https://www.linkedin.com/company/epri
https://www.facebook.com/EPRI/
https://twitter.com/EPRINews
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Background

▪ Commercial nuclear power utilities have large amounts of 
equipment maintenance records captured over many decades

▪ Due to a combination of advancements in computational capabilities 
and external market financial pressures on the nuclear power 
industry, EPRI has engaged in a project to analyze and more 
effectively utilize maintenance data in order to implement more 
cost-effective preventative maintenance (PM) strategies

▪ Some utilities have applied a combination of natural language 
processing (NLP) and an artificial neural network to evaluate similar 
plant process data to improve the administration and evaluation of 
programmatic data to reduce the required labor resources.

http://www.epri.com/


© 2020 Electric Power Research Institute, Inc. All rights reserved.w w w . e p r i . c o m38

Project Objective

▪ Utilizing machine learning (ML) and data analytics (DA), 
determine to what extent these analysis tools can analyze 
large volumes of equipment data and provide insights 
leading to improving plant equipment reliability and/or 
reduce significant equipment related events

– EPRI has collected approximately 18 million maintenance 
work order records from 10 utilities over the last few 
years

▪ Using NLP, compare the work order history of similar 
components across a number of different utilities and 
plants

‒ Compare statistical annual costs of each matching 
(similar) component with existing PM strategy

▪ Evaluate the impact of different PM strategies based on 
total CM and PM costs (both labor and material)

http://www.epri.com/
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PM Strategy Comparison Overview

Work Order Data
Cleaned Work 

Order Data Component ID 
Dataset

Remove/Link 
Duplicates Concatenate/Sum 

by Component ID

Clean Text Data Train Vocabulary
Evaluate Word 
Occurrences

Calculate 
Component ID 

Matches
Component PM 

Strategy 
Comparison

Sort/Filter by 
Dissimilarity Score

Prepare Work Order Data for Component ID Comparison

Prepare Text Fields for 

Analysis Calculate Matches to Compare PM Strategy Costs

http://www.epri.com/
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Challenges

▪ Data Quality

– These records are in a variety of host database software programs

– There is not a standard set of data fields utilized by all utilities

– Due to the variation of original plant architect engineers, system and component IDs vary  

– Within the industry there is not a standard set of acronyms

– High dollar value and negative values for select labor hours and material costs require further text 
field review for resolution 

http://www.epri.com/
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Data Analysis of the Project

▪ Progress to Date 

– Develop and test the computational architecture and algorithms to be used 
to perform the data analytics

– Created K-mode clustering algorithms and applied to an example dataset to 
establish initial data clustering and to identify data centroids

– Created an acronym translation matrix and applied to a sample set of the 
dataset

– Processing of text data fields and incorporated results into clustering 
analysis

– Correlation of text field phrases with actual labor hours and costs

http://www.epri.com/
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Data Analysis of the Project

▪ Statistical Analysis of Work Orders

– Developed K-mode clustering approach to identify similar work orders

– Performed statistical assessment of clusters to identify trends in material and labor costs

▪ PM Strategy Comparison

– Developed approach to identify similar equipment at different sites and utilities

– Developing the ability to examine the impact of different PM strategies on the overall maintenance costs

Queried Component ID

PM Strategies for each 

selected Component 

ID

Annualized Material 

Costs and Labor Hours

http://www.epri.com/
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Next Steps

▪ Continue with text processing and apply to additional component types

▪ Quantify impact of different PM strategies on overall cost (PM Cost + CM Cost)

▪ Progress the analysis with additional utility datasets

http://www.epri.com/
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Together…Shaping the Future of Electricity

http://www.epri.com/
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Nuclear Plant Automation 
• Team: M. Golay (MIT), S. Cetiner, P. Ramuhalli (ORNL)

• Complex and dynamic plant response in broader scenarios must be captured

− Problem area becomes very large

− AI/ML with data analytic can be mobilized, but it is a black box approach

• Human operators (in control room or remote) must be considered 

− A white box approach is needed for better collaboration

− The outcome of AI/ML must be verifiable, so physical meaning plays a key role

• The balanced and harmonized automation

− How to express current plant status, target status, and operational strategy?

• High precision in large problem in dynamic situation

• Link with advanced sensors, monitoring algorithms, experts knowledge

− Controllable size of AI applications which are connected by physical knowledge

− Cells in the system space motivated by Markov CCM* 

• Movement through cell space → dynamic modeling, operational strategy

• Current cell identification → connection with available information and expert knowledge

• Relationship among cells → controllable problem size 

• Tagging with physical meaning → collaboration with human

* Tunc Aldemir. "Computer-assisted Markov failure modeling of process control systems." IEEE Transactions on reliability 36.1 (1987): 133-144.

j(1) j(2) j(3) j(k) j(k+1) j(e-1) j(e)

m(1) m(2) m(3) m(k) m(k+1) m(e-1) m(e)

f(3) f(k) f(k+1) f(e-1) f(e)



Integrated Artificial Reasoning

System P&ID Functional Modeling (MFM) Dynamic Bayesian Network

* Junyung Kim, Asad Ullah Amin Shah, and Hyun Gook Kang. "Dynamic risk assessment with Bayesian network and clustering analysis."

Reliability Engineering & System Safety (2020): 106959.

• Functional modeling represents system knowledge and dependency information

− Connection between the nodes was identified by MFM (the arrows in Bayesian net)

− No unnecessary joint probability calculations in Bayesian net

• The states of nodes were determined by unsupervised ML based on plant simulation results

− The role of data analytics is limited to state discretization: defining the possible states in each node.

− Computational cost was reduced comparing to equal width discretization (EWD)*



Automated Reasoning Algorithm for Decision Support

General Flow of Decision Making Support

3

Pr(System k+n = FAIL | Strategy 1, System k = ′A′)

Pr(System k+n = FAIL | Strategy 2, System k = ′A′)

Pr(System k+n = FAIL | Strategy 𝑖, System k = ′A′)

…

2

3

2

1

1 System state is defined by integrated artificial reasoning.

Operators may have multiple options

Outcome of mitigation strategies can be quantified by the 
conditional probabilities



Example: FLEX Strategy Decision Making
Arrangement of Portable Pumps Deployment 

• Combined accident: LOCA * LOOP 

• Break size, battery time, EDG duration are unknown*

• RELAP simulations + MFM model → Dynamic Bayesian network 

• Operator decision making 1hr after accident

• Four pumps are available and two can be deployed at one time**

• Larger break requires direct RV refilling, while smaller break needs Aggressive 
cool-down 

• Two options

• Strategy 1: Refilling reactor vessel in priority
First two pumps deployed to RV and next two to SG

• Strategy 2: Refilling RV and Aggressive cool-down 
In each deployment, one to RV + the other to SG 

• Integrated approach

• Physical simulation results, physical inference reasoning, and ML are integrated 
into Dynamic Bayesian network 

• Joint probabilities for all connected states and nodes are calculated

• Conditional probability evaluates the options

• Pr(System end = FAIL | Strategy 1, System 120 = ′𝐴′) = 0.2963

• Pr(System end = FAIL | Strategy 2, System 120 = ′𝐴′) = 0.1111

Note:     * Break size 1 (m2) ∈ {0.0006, 0.0012, 0.0018} ;   Break size 2 (m2) ∈ {0.0005, 0.0007, 0.0009} ; 

Battery time (hr.) ∈ {3, 4, 5}, EDG working time (hr.) ∈ {3, 4, 5}

**Portable pump arrangement time: first deployment (hr.) ∈ {4, 5, 6} ; second deployment (hr.) = 1.5 hr after 1st deployment



Looking Ahead

• Integrated artificial reasoning method is important
• Many possible sources of information can be merged for the best decision making

• Mathematical expression serves as the basis of verification and validation

• Well organized analysis provides dependency information which reduces computational cost

• Connection between AI/ML outcomes with Physical meaning is challenging
• It is inevitable for the collaboration with human and for the utilization of prior knowledge

• A systematic method to back-track the cluster’s physical meaning is under development

• Automation should be verifiable
• For enhanced traceability and physical inference, the system state needs to be carefully defined and 

identified. This state concept will be the start point of verification

• Automated decision making algorithm will have better applicability when it is balanced with human 
operator’s power of verification

• Understandable AI
• This is one of possible approaches to achieve the understandable AI
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Smart Piping & Instrumentation Diagram Drawing 

Recognition

Carol Smidts
(smidts.1@osu.edu)

The Ohio State University
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Topic Introduction

• Piping and Instrumentation 

diagrams (P&ID) are one of the 

most commonly used drawings to 

describe components and the 

relationships between 

components in nuclear power 

plants.

• They are inputs to safety analysis 

and analysis related to O&M.

• Manually extracting information 

from P&IDs is time consuming, 

and error prone.

• Our research aims to use 

advances in neural networks to 

automatically extract all relevant 

information from P&IDs. P&ID for Residual Heat Removal System*

*Westinghouse Electric Company LLC, 2011. AP1000 Design Control Document No. APP-GW-GL-700, Rev. 19

Department of Mechanical & Aerospace Engineering

Nuclear Engineering Program
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The research will boost the 
application of AI/ML in high 

risk applications like risk 
analysis for nuclear power 

plants.

Why it is relevant to ML/AI Future

Department of Mechanical & Aerospace Engineering

Nuclear Engineering Program

(OSU’s Nuclear Power Plant Simulator running the GSE Systems GPWR)
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Little Training
Data

Diverse 
Symbols

Small 
Objects

Challenges*

Department of Mechanical & Aerospace Engineering

Nuclear Engineering Program

left

right

to
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The symbol’s 

bounding box

L
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t 
ed

g
e

Top edge

*Gao, Wei, Yunfei Zhao, and Carol Smidts. "Component detection in piping and instrumentation diagrams of nuclear power 

plants based on neural networks." Progress in Nuclear Energy 128 (2020): 103491.
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•Data Source: DCD

•Data Grouping

•Label Images

•Data Augmentation

•Split Datasets

Data
Preparation

•Faster RCNN

•Hyperparameters 
Configuration

•Component Detection

•Text Detection

Detection
•Map Text to Component

•Connect Components to 
Pipes

Association

Methodology*

Department of Mechanical & Aerospace Engineering

Nuclear Engineering Program

*Gao, Wei, Yunfei Zhao, and Carol Smidts. "Component detection in piping and instrumentation diagrams of nuclear power 

plants based on neural networks." Progress in Nuclear Energy 128 (2020): 103491.
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Illustration*

Matching text to component*

Matching component to pipe*

Hyperparameters to tune*

Cropping scheme*

Department of Mechanical & Aerospace Engineering

Nuclear Engineering Program

*Gao, Wei, Yunfei Zhao, and Carol Smidts. "Component detection in piping and instrumentation diagrams of nuclear power 

plants based on neural networks." Progress in Nuclear Energy 128 (2020): 103491.
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Results*
•Defining Groups.

Group no. AP(%)

2 95%

3 92%

Mapping ratio

Text to components 117/120

Component to pipe 315/315

Test Results for Group 1

Department of Mechanical & Aerospace Engineering

Nuclear Engineering Program

Actual bounding box

predicted 

bounding 

box

TP, if intersection/union >=0.5

*Gao, Wei, Yunfei Zhao, and Carol Smidts. "Component detection in piping and instrumentation diagrams of nuclear power 

plants based on neural networks." Progress in Nuclear Energy 128 (2020): 103491.

Class # Class Name AP (%)

1 Butterfly Valve (normally open) 100

2 Butterfly Valve (normally closed) 100

3 ball valve (normally open) 99.6

4 ball valve (normally closed) 100

5 check valve 100

6 flow control valve (normally open) 100

7 flow control valve (normally closed) 100

8 heat exchanger 99.8

Metric:

AP(Average 

Precision) = 

A1+A2+A3

Class # Class Name AP (%)

9 manual valve 100

10 motor pump 90.6

11 motor valve (normally open) 83.3

12 motor valve (normally closed) 100

13 orifice 88.1

14 pneumatic valve (normally open) 100

15 pneumatic valve (normally closed) 100

16 relief valve (normally open) 100

Class

#

Class Name AP (%

)

17 relief valve (normally

closed)

100

18 squib valve 100

19 solenoid valve (normally

open)

100

20 Solenoid valve (normally

closed)

100

21 tank 100

22 up_arrow 94.1

23 right_arrow 93.3

24 down_arrow 96.2

25 left_arrow 90.0

0.5IoU
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Initial Confi

guration

New Config

uration

Configuratio

n Ratio (%)

Initial Trai

ningTime

(hours)

New Train

ingTime (

hours)

Relative

TimeRed

uction (

%)

InitialAP(

%)

New

AP(%)

AP Differ

ence (%)

Hardware

configuration

NVIDIA

2080Ti

NVIDIA

RTX Titan

- 116

(for pipes)

- 20 92 - -

Optimization

algorithm

Momentum Adam - 116

(for pipes)

25

(for pipes)

78 92 91 -1.07

Batch size 1 (256×256) 16

(256×256)

1600 6 2hrs

50mins

47 67 66 -1.49

The dimension

of the

training images

1400×1400 1000×1000 51 116

(for pipes)

34

(for pipes)

70 92 84 -8.70

256×256 3 116

(for pipes)

6 (for

pipes)

95 92 66 -28.26

The number

of training

images

90% of the

total images

50% of the

total images

56 54 (for

common

symbols)

30 (for

common

symbols)

44 95 90 -5.26

Results* (cont'd)
Comparisons of the training time using different settings

The amount of time needed for traditional manual analysis is about 600 hours.

The total training time of the three detectors is about 200 hours.

Department of Mechanical & Aerospace Engineering

Nuclear Engineering Program

*Gao, Wei, Yunfei Zhao, and Carol Smidts. "Component detection in piping and instrumentation diagrams of nuclear power 

plants based on neural networks." Progress in Nuclear Energy 128 (2020): 103491.
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Department of Mechanical & Aerospace Engineering

Nuclear Engineering Program

• Previous work on P&ID information extraction in non-nuclear industry

• Work precedes deep learning

• No existing benchmark

• Not enough information to reproduce results

• Most recent work (FCN with Probabilistic Hough Transform 95%, 65% 
whereas our approach in average reaches 98%, 92%)

• No linking of information

• Our work systematically explores CNN applications and hyperparameter 
selection

• Our work defines a robust P&ID specific training data preparation and 
augmentation approach

• Our work links available information and can be used to automatically create 
safety analysis or other models.

Contributions
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• Combine the detection results of all patches

• Reduce detection error that comes from 
incomplete symbols resulting from cropping

• Use presumed component relationships to 
increase performance

• Extend to other nuclear plants and possibly to 
other industries that use the same standards

• Further optimize the training time while 
maintaining performance

• Requires an understanding of 
hyperparameters and their relation to 
performance

• Automatically generate the fault tree structure 
from the detected components and their 
relationships

Department of Mechanical & Aerospace Engineering

Nuclear Engineering Program

Looking Ahead
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Thank you.

Questions?

smidts.1@osu.edu

Department of Mechanical & Aerospace Engineering

Nuclear Engineering Program
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Background

• Objective: Improve reliability and streamline maintenance for Circulating Water 

Pump & Motor sets
– Critical to plant operation – helps to remove heat from system via river water

– Large, expensive assets that the plant requires to safely operate

– Rigorously maintained by plant engineers

• Method: Estimate number of events related to equipment degrading
– Application with traditional reliability engineering methods

– Ideally, this approach could be applied to other equipment and sites across the 

nuclear industry - not all equipment monitored by sensors

• Datasets: Maintenance records (work orders) & sensor data 
– Work orders contained description field – free form text
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Why ML/AI?

• NLP able to extract valuable insights from previously unusable/unwieldy data
– Incredibly difficult with traditional text analysis tools

– Corroborates or challenges other data 

– Accuracy comparable to that of SME

• Allows us to..
– More accurately estimate equipment degradation events

• Goes beyond site work order labels and failure databases

– Develop a rich history of equipment performance and maintenance 
• Not dependent on sensor data – can be used on any equipment with maintenance history

– Validate work order part consumption data vs. work order description
• E.g. work describes parts being used – but no stock is tied to work order (or vice versa)
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NLP & Reliability Engineering

• Mixture of NLP and subject matter expert 
(SME) examination

• Utilizing NLP, classifiers were designed that 
would attempt to determine key facts and 
observations from the work order description

• Overlay this information with sensor data to 
observe performance trends and the 
maintenance response
– To our understanding, this approach is novel

• Cross-validate extracted work order 
information with sensor data
– Leverage SMEs to provide engineering 

knowledge and operating experience
– Lends insights into interactions between 

operations and maintenance
Desc: “21A CW Motor Otbd Bearing Temp Fail  wc”

WO Start
WO End
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Challenges

• Free form text with many technical abbreviations and keywords
– "CALIBRATE DIV 2 CORE SPRAY PUMP DISCHARGE FLOW SWITCH PER NE-

6.6-EQMS.080"

– "SODIUM HYPOCHLORITE DOSING PUMP 1 LEAK FROM DISCHARGE PIPE"

– "23B IMPELLER TOUCHES CASING,REPLACE PUMP"

• Inconsistent, complex – but valuable – content

• Sample stratification difficult
– Relying on site provided labels which may have bias

• SME annotation requires clear communication across disciplines
– Strive for consistency

– Objective as possible
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Future Work

• Incorporate data from newly installed vibration sensors

• Support ongoing reliability engineering analytics
– Survivability analysis, condition-based maintenance

• Analyze maintenance data traditions vs. sensor data
– Equipment state vs. work order data response

• Utilize SMEs to identify sensor trends and corresponding modes of equipment 

failure
– Use this information to automatically generate work packages

– Analyze past work order part usage to correlate failure modes and parts issued for 

repair

• Apply to other equipment sets and sites
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The importance of Uncertainty Quantification (UQ), sources of uncertainties

Although M&S has made tremendous progress in many areas1, there are always discrepancies between ideal in  silico 

designed systems and real-world manufactured ones. Therefore, uncertainties must be quantified along with  

simulation to facilitate optimal design and decision making.

UQ systematically treats various sources of uncertainties and propagates them through a computational model to  

produce predictions of Quantities-of-Interest (QoIs) with quantified uncertainty.

Sources of uncertainties:

1 Parameter uncertainty:  due  to ignorance  in the exact values  of input parameters  or inherent variations

2 Numerical uncertainty:  due  to numerical approximation errors,  such  as  spatial/temporal discretizations

3 Model uncertainty: due to simplifications in the model, such as missing/incomplete and inaccurate  

underlying physics. Also called model bias/error/discrepancy/inadequacy, or model form uncertainty.
4 Experimental/data uncertainty:  due  to measurement noise

5 Code/interpolation uncertainty:  due  to emulation (surrogate modeling) of expensive  computer models

1 Sources of figures, from left to right: (1) h t t p s : / / g r a p h i c a l . w e a t h e r . g o v / ,  (2) van den Bos et al. (2017). Non-intrusive uncertainty quantification using reduced cubature rules. Journal of Computational Physics, 332,  418-

445. (3) h t t p s : / /www . s c i e n c em ag . o r g / n ew s /2 0 2 0 /0 2 / s c i e n t i s t s - a r e - r a c i n g -mod e l - n ex t - mov e s - co r o n av i r u s - t h a t s - s t i l l - h a r d - p r ed i c t ,  (4) Raissi, M. et al. (2020). Hidden fluid  

mechanics: Learning velocity and pressure fields from flow visualizations. Science, 367(6481), 1026-1030., (5) h t t p s : / / www . o r n l . g o v / p r o j e c t / v e r a - c s - h i g h - f i d e l i t y - lw r - c o r e - s im u l a t o r - c a s l ,  (6)  

h t t p s : / /www . i n o v ex . d e / b l o g / u n c e r t a i n t y - q u an t i f i c a t i o n - d e ep - l e a r n i n g / . The copyright belongs to the original author.

Xu Wu (NCSU) Uncertainty  Quantification with Scientific  Machine Learning 1 / 4

https://graphical.weather.gov/
https://www.sciencemag.org/news/2020/02/scientists-are-racing-model-next-moves-coronavirus-thats-still-hard-predict
https://www.ornl.gov/project/vera-cs-high-fidelity-lwr-core-simulator-casl
https://www.inovex.de/blog/uncertainty-quantification-deep-learning/


Idaho  National Laboratory Machine  Learning  &  Artificial Intelligence  Symposium  3.0, October 16, 2020

Use Machine Learning (ML) and Deep Learning (DL) for scientific computing and UQ

Supervised Learning algorithms are more likely to be used since in M&S we generally have labeled QoIs.  

Unsupervised Learning algorithms can also be very helpful, especially dimensionality reduction together with UQ.  

ML/DL algorithms generally require large amount of training data and high-performance platforms (e.g., GPUs).

They are typically used as a certain form of black-box surrogates or Reduced Order Models (ROMs). In certain

cases, Physics-Informed ML/DL (PIML/PIDL) can be used to incorporate physical knowledge that comes from

sources such asphysical principles, constraints, expert feedback, initial/boundary conditions, etc.

Code uncertainties (i.e., prediction uncertainties in ML/DL models) can be laborious to obtain. Using methods

such asMonte Carlo Dropout2, Deep Ensembles3, Bayesian Neural Network4, etc.

2 Gal,  Y., & Ghahramani,  Z. (2016, June).  Dropout as  a  bayesian  approximation:  Representing  model uncertainty in deep  learning.  In international conference  on  machine  learning  (pp. 1050-1059).

3 Lakshminarayanan,  B., Pritzel, A., & Blundell, C. (2017).  Simple  and  scalable  predictive uncertainty estimation using  deep  ensembles.  In Advances  in neural  information processing  systems  (pp. 6402-6413).

4 Neal, R. M. (2012).  Bayesian  learning for neural networks.  Springer Science  & Business  Media.
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A new  course:  NE 795 Special Topics in Nuclear Engineering - Scientific Machine Learning

AI/ML has been very successful in areas  

such as computer vision, natural language  

processing, etc. But its application in  

scientific computing is relatively new,  

especially in Nuclear Engineering (NE).

Scientific Machine Learning (SciML)  

consists of computational technologies that  

can be trained with scientific data to  

augment or automate human skills.

This course aims at augmenting the  
applications of AI/ML in NE scientific  
computing problems, and preparingthe
students for transformative solutions across  
various DOE missions. For example:

1
2
3

Data-driven closure  model development;

Data-driven material discovery  and qualification;

Digital twins for integrated energy systems,  
SMRs and micro-reactors;

4 AI-based  autonomous operation and  control for

advanced nuclear reactors;

5 AI-based diagnosis, prognosis and predictive  
maintenance;

6 and many more. . .

3

1 Part 1:  Fundamentals of Machine Learning
Perceptrons, Sigmoid Neurons and ANNs

Classifying Handwritten Digits and Gradient Descent  

Backpropagation
Cross-entropy,  Softmax and Negative Log-likelihood Cost

Overfitting and Regularization

Bias, Variance, Hyperparameters and Weight Initialization  

Vanishing Gradient, Activation Functions and SGD Variations  
Generalized Linear Regression, Subset Selection and Shrinkage  

Gaussian Process Regression
Dimensionality Reduction  with PCA

2 Part 2:  Uncertainty and  Sensitivity Analysis

Forward UQ  
Inverse UQ
Prediction Uncertainty in ML/DL Models

SA Methods  

Data-driven SA

Part 3:  Advanced Topics

Physics-Informed Machine Learning (PIML)  

Machine Learning in Nuclear Thermal Hydraulics
Bayesian  Neural Networks (BNNs) and  Variation Inference (VIs)

Convolutional Neural Networks (CovNets)

Recurrent Neural Networks (RNNs) and Long Short-Term Memory  

(LSTM)
Generative Adversarial Networks (GANs)

Variational Autoencoders (VAEs)
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Computer projects from NE 795 - Scientific Machine Learning
1 Development of a  Predictive Maintenance Framework  using  Bayesian  Neural Networks

– Andy Rivas  and Kingsley Ogujiuba

2 Using  an  Artificial Neural Network to Speed  Up Direct Numerical Simulation (DNS)
– Anna Iskhakova

3 Demonstration of Advantages  of Physics-Integrated  Machine  Learning  for Fluid Mechanics Problems
– Arsen Iskhakov

4 Implementation of Long-Short Term  Memory (LSTM) for Turbulence  Study of Single-phase  Low  Prandtl Fluid
– Cheng-Kai Tai

5 Predict T /H  parameters for Various Points in the BWR Stability Graph for the Hottest Assembly in Peach  
Bottom Unit 2 Reactor

– Devshibhai Ziyad

6 Meta-Feature Landmarking for Efficient Model Selection  in Ensembles
– Edward Chen

7 Quantification of Uncertainty Introduced  by  Deep  Neural Networks
– Jess Williams

8 Application of Neural Networks for Predictions of the Axial Flux Profile in the SAFARI-1 Research Reactor
– Lesego Moloko

9 Using Machine Learning Potential to Obtain Phonon Dispersion Curve
– Yuqing Huang

10 Solving  Ordinary Differential Equations by  Deep  Neural Networks
– Ziyu Xie
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Risk Informed Predictive Maintenance Strategy*

Machine Learning Visualization

Artificial IntelligenceRisk

Labor

Paper-based

Periodic

High Cost

Wireless

Electronic/
Robotic 
Devices

Low Cost

Condition-
based 
Analytics

Labor-centric 
Preventive 

Maintenance

Risk-informed 
Predictive 

Maintenance

Research &
Development

* Agarwal, V et al., Deployable Predictive Maintenance Strategy based on Models Developed to Monitor Circulating Water System at the Salem

Nuclear Power Plant (INL/LTD-1955637). Idaho National Laboratory, September 2019.



Scalability of Risk Informed Predictive Maintenance 
Strategy*

Risk-Informed

Predictive

Maintenance

Scalability

Framework

Generation Risk Safety Risk

Mobile Visualization

Trending

Prognosis

Diagnosis

Machine 
Learning

Artificial 
Intelligence

Data Quality 
and Completeness

Fault 
Signature

Generation 
Risk

Machine 
Learning

Artificial 
Intelligence

Safety Risk

Condition-based 
Analytics

Predictive 
Modeling

Advanced 
Data 

Analytics

Risk
Modeling

Visualization

Risk-informed 
Predictive 

Maintenance

Scalability is defined as expanding capabilities of a target entity to meet current and future application-specific requirements

* Agarwal,V., Manjunatha, K., Gribok, A., Mortenson,T., Ulrich,T., Boring, R., and Harry, P. Scalability of a Risk-Informed Predictive 

Maintenance Strategy (INL/LTD-20-58848). Idaho National Laboratory, June 2020.



Significance and Impact of this Research

• Predictive maintenance are traditionally developed at component-level or at most 
at system-level

• Technology developed must be scalable across,

− plant systems and

− nuclear fleet 



Federated Transfer Learning (FTL) Approach*

TRANSFER LEARNINGFEDERATED LEARNING

Central Server
Continuous 

Update of 

Aggregated 

Machine 

Learning 

Model

Aggregated 

Machine Learning 

Model

Machine Learning 

Model

Plant Site 1 Plant Site 2

U
n
it
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Aggregation of Individual 

Models to Generate a 

Master Model

... ......

* Agarwal,V., Manjunatha, K., Gribok, A., Mortenson,T., Ulrich,T., Boring, R., and Harry, P. Scalability of a Risk-Informed Predictive 

Maintenance Strategy (INL/LTD-20-58848). Idaho National Laboratory, June 2020.



Circulating Water Pump (CWP) Data Types

A schematic representation of a CWS motor and 
pump with  temperature measurement locations Figure: Salem Unit 1 Pump 11A 

Time →



FTL: Support Vector Machine, (SVM)

CWP Prediction Accuracy

Pump 11 94.3%

Pump 12 94.0%

Pump 13 92.6%

CWP Prediction Accuracy

Pump 11 96.3%

Pump 12 96.9%

Pump 13 94.4%

CWP Prediction Accuracy

Pump 21 89.93%

Pump 22 90.23%

Pump 23 84.67%

SVM: Plant 1

SVM Federated Learning: Plant 1

FTL SVM Transfer Learning: Plant 2

• Labels: Motor status information (OFF = Under Maintenance, ON = Operating)

• Features: Motor temperatures- Stator, Inboard bearing, and outboard bearing

• SVM to classify CWP as:

• Healthy (Operating) or Unhealthy (Under Maintenance) 

• Support Vectors from each SVM model are combined and shared

SVM model and parameters



Looking Ahead

• Enhance FTL modeling for other data types

− Vibration 

− Motor current

• Develop FTL framework with other machine learning approaches

− Logistic regression

− eXtreem Gradient Boosting (XGBoost)

• Apply FTL to different applications

− Secure wireless communication
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Introduction & Background

AI – technology that performs tasks 
which mimic human intelligence [1].

Machine learning (ML)

− Powers AI

− Algorithms capable of 
generalizing lessons learned 
from a limited data set to allow 
for abstraction of lessons to a 
larger environment [2].

• Disruptive technology



Problem

AI/ML introduces problems of a 

breadth and nature that are difficult 

for humans to envision.

− Traditional security problems

− AI/ML unique problems 

− Rapidity 



Specific Problem

Problem 1: Data corruption [3]

− Description: This group of 
attacks includes data 
poisoning, data 
perturbations, 
environmental corruptions, 
side effects, common 
corruption.

− Effects

• Misclassifications

• Grouping changes



Specific Problem

Problem 2: System 
corruption [3]

− Description: Reprogramming 
ML, malicious ML provider 
recovering training data, 
reward hacking, backdoor 
ML, software dependencies 
exploitation, AI supply chain 
attacks

− Effects:

• Misclassification

• Improper groupings

• Data loss



Specific Problem

Problem 3: Model corruption [3]

− Description: Membership inference, 

model stealing, model inversion, 

distributional shifts

− Effects: 

• Data loss

• Algorithm manipulation

• Algorithm anticipation

• Data grouping manipulation



Specific Problem

• Problem 4: Known unknowns and 
unknown unknowns [3], [4]

− Description: Natural adversarial examples, 
overfitted models, incomplete testing, 
MUAI, 

− Effects: 

• Algorithms prioritization schemes are 
inappropriate or inaccurate

• Algorithms behave in unanticipated, 
unintended manner

• Algorithm confusion



Proposed General Solutions - Traditional 



Proposed General 
Solutions - Newer 

[5]



Recommended Course of Action

Way forward

− Better coupling of policy makers, researchers, 
domain SMEs, engineers, users etc. to 
investigate, prevent and mitigate MUAI

− Research and engineers should take serious 
dual-use AI

− Develop best practices for AI uses

− Resilient data and systems

− Include cybersecurity representation on AI/ML 
initiatives.



Conclusions

• AI disruption will transform many of the workflows in our 
current lives.

• AI disruption will introduce unforeseeable problems.

• Humans will need to remain in the loop for the 
foreseeable future. 

• Significant research into operational security will need 
to be undertaken.
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Concrete Damage Diagnosis & Prognosis

• NPP Relicensing ➔ Secondary containment structures ➔ Concrete

• Concrete damage diagnosis and prognosis ➔ support relicensing

• Existing work in concrete ASR diagnosis:  Damage detection only

• Our focus ➔ Damage localization and quantification 

• Non-destructive testing

− Dual excitation vibration (vibro-acoustic modulation, VAM)

− Thermography (infra-red thermal camera)

• Experimental specimens

− Induced alkali-silica reaction (ASR) ➔ Cracking

− ML methods successfully constructed damage map

− Validation: 

• Core samples (petrography, spectroscopy)

• Destructive testing



Why it is relevant to ML/AI Future

• ML/AI Approaches

• Physics-informed learning

• Transfer learning

• ML/AI Methods

• Deep neural network

• Convolutional neural network

• Bayesian neural networks

• Benefits

• Automation

• Speed

• Training cost

• Uncertainty quantification

• Decision support

• Structural health monitoring

• Concrete structures NDE

• Heterogeneous materials

• Broader impact

• Big data analytics (NASA)

− Batch learning

• Digital twin (U.S. Air Force, ABS, Mitsubishi)

• Other applications in my group at VU
− Additive manufacturing (NIST)

− Air transportation safety (NASA)

− Rotorcraft control (U.S. Army)

− Patient care (NIH)

− Power grid management (DOE)



Topic Details and Discussion

Dual excitation vibration testing (VAM)

− Side-bands in frequency response

− Sum of side-band intensity (SBSum)

− SBSum value indicates damage likelihood

− Test inputs: excitation frequencies, amplitudes, and 
locations

• Training Data:  2D FEA model

• Two types of DNN models trained

− Damage classification of sensor location 

− SBSum prediction at sensor location

• Output:  Damage map, damage depth; Bayesian estimation 
(diagnosis uncertainty) using Monte Carlo dropout

Infra-red thermography

− Heating at bottom, observe top surface 
temperature evolution

− Traditional filtering techniques not useful

• Training Data:  3D FEA heat transfer model

• Two types of CNN models trained with transfer 
learning from Imagenet

− VGG-19 convolution core

− Inception/Resnet convolution cores

• Output for each element

− Damage classification (yes/no)

− Damage shape

− Bayesian estimation (diagnosis uncertainty)

• Accuracy of result 85% to 95%
Posterior 

of 

damage 

depth



Looking Ahead

• Further work

− Mechanical NDE (VAM)

• Automation

• Multi-fidelity training   (Additional 3D FEA runs)

• Distributed damage

• Reinforced concrete

• Non-contact sensing (e.g. laser Doppler velocimetry)

− Thermal NDE (Infrared thermography)

• Passive heating of specimen

• Thermal video-based NDE

• Reinforced concrete

− Information fusion from thermal and mechanical NDE

− Uncertainty quantification for decision support
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