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“’Data – What is it good for!”
Agenda – ML/AI Symposium 7.0

February 10, 2022 – 11:00 AM to 1:00 PM MDT
Time Presentation Subject Speaker(s)

11:00-11:10 "Data" What is it good for! Curtis Smith

11:10-11:30 Addressing Data Issues and Data Collection to Support AI Development Jeremy Renshaw

11:30-11:45 Operating Nuclear Power Plant Data for AI/ML Applications Zhegang Ma

11:45-12:00 Large Language Models in The Nuclear Domain Bradley Fox & Jerrold Vincent

12:00-12:10 Considerations of Data Integration in the Nuclear Power Industry Ahmad Al Rashdan

12:10-12:20 INL Strategic Plan: Data goal Eric Whiting 

12:20-12:30 Physics-informed Machine Learning for Engineering Applications with Sparse Data: BWR Moisture-Carryover Prediction Haoyu Wang

12:30-12:40 Non-Invertible Deceptive Infusion of Data (DIOD) Methodology for Critical Data Communication Hany Abdel-Khalik

12:40-12:50 Analysis and handling of big data in cosmology: AI/ML to the rescue Katrin Heitman

12:50-1:00 Improving the quality of Imbalanced datasets using Generative Machine Learning Models Jared Wadsworth
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Welcome to the AI/ML Symposium 
7.0 – "Data" What is it good for!

February 10, 2022

Dr. Curtis Smith, Director
Nuclear Safety and regulatory 
Research Division



"Data" What is it good for!

• About two years ago, we started the x.0 symposiums on Artificial 
Intelligence (AI) and Machine Learning (ML), with a focus on science and 
engineering

• In that time, AI/ML has continued to evolve and be applied to complex 
tasks

• What has not really changed is the need for data in AI/ML
−Hence the focus of the 7.0 symposium

• Unlike the “War” Motown song sung by Edwin Starr, data is absolutely 
worth something

• Today, we will hear from a variety of speakers on the need and use of data 
for various applications and domains



“And I told him, AI and ML aren’t the thing.
They’re the thing that gets us to the thing.”

(See Halt and Catch Fire)



Curtis.Smith@inl.gov

Thank you and enjoy 
the symposium!
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Addressing Data Issues and Data 
Collection to Support AI Development
Jeremy Renshaw
Sr. Program Manager, Artificial Intelligence
jrenshaw@epri.com

ai.epri.com |  ai@epri.com

http://www.epri.com/
https://www.linkedin.com/company/epri
https://www.facebook.com/EPRI/
https://twitter.com/EPRINews
mailto:jrenshaw@epri.com
http://www.ai.epri.com/
mailto:ai@epri.com
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Improving the data used in your 
AI/ML model will (typically) improve 
the model performance more than 

improving the AI model itself

Key Point on Importance of Data
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Importance of Data for 
Artificial Intelligence
 Data plays a critical role in AI/ML model 

results
 Data must be of sufficient quality, 

quantity, and cover the anticipated 
range of conditions

 Data is the “fuel” for the AI engine, but 
we are much more likely to feed our AI 
bad data than put bad gas in our car.

 Having a “great” algorithm on “fair” data 
is worse than having a “fair” algorithm 
on “great” data

Many algorithms using AI that solved major challenges were available years or 
decades before they were implemented.  The limiting factor was data availability.
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Notable Examples of AI Failures Due to Data Issues

What went wrong?

An AI system was used to flag suspected fraudulent transactions in financial data

The AI algorithm was trained with vast tomes of high-quality data

The data had high quality, large quantity, and covered a wide range of conditions

However, when it went active, the AI algorithm immediately flagged every single 
transaction on a particular island as fraudulent.
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Notable Examples of AI Failures Due to Data Issues

Image Classified as:  Dog Image Classified as:  Wolf

= Area Used by Humans to Classify the Image
= Area Used by Computers to Classify the Image
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Notable Examples of AI Failures Due to Data Issues

 Image Classified as:  Dog  Image Classified as:  Wolf
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What is needed for AI to be successful in Power Industry?
Training Data Sets:

- Statistically Significant

- Wide Range of Conditions

- Secured and Governed 

- Anonymized 

AI Community:

- Aware of Power Industry Issues

- Understand the Physics

- Have access to Data Sets

Understand AI Performance:

- Criteria for AI Applicability

- Unbiased Technically Sound 
Evaluation of AI Solutions

Power Industry Experts:

- Understand AI Basics

- Know where AI is Applicable

- Aware of, and engaged with, AI 
Community and sharing data

Training Data Sets:
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- Wide Range of Conditions

- Secured and Governed 

- Anonymized 
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- Aware of, and engaged with, AI 
Community and sharing data
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AI.EPRI: Be the AI catalyst for tomorrow’s energy network

AI Grand Challenges 

A
I C

om
m
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ity Ind

ustry Expert

Data Science Platform

T&D Overhead 
Line Imagery

Transformer Demographic and 
Historical Oil Analysis Data

AMI Data Power Quality Satellite Data

Power Plant 
Operational Data

Generation Asset 
Maintenance Information

Control Center Operational 
And Protection Data

Nondestructive 
Evaluation Data

5G and Advanced 
Network Data
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Our

AI GRAND CHALLENGES
Grid-Integrated Smart Cities

Environmental Impacts

Energy System Resilience

Intelligent and Autonomous Plants

AI-Enhanced Cybersecurity

Collecting, Curating and Sharing Data, 
and Developing Solutions

Deepening AI Expertise in the Electric Power 
Industry

Building an AI-Electric Power Community

AI.EPRI.com
ai@epri.com
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Conclusions

 Data is a critical aspect of AI/ML models 
that cannot be overlooked

 Data must be of sufficient quantity, 
quality, and cover the range of 
conditions

 WATCH OUT for biases in the data and 
expect the unexpected

 Understand and try to mitigate potential 
pitfalls and unintended consequences 
caused by your training data

 AND Don’t forget!!!

 Improving the data used in your AI/ML 
model will (typically) improve the 
model performance more than 
improving the AI model itself

Contact: 
ai.epri.com |  ai@epri.com

mailto:ai@epri.com
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Together…Shaping the Future of Energy™



Operating Nuclear Power Plant Data 
for AI/ML Applications
INL – AI & ML Symposium 7.0

Zhegang Ma, Sai Zhang, Han Bao, Andrea Mack
Idaho National Laboratory

Min Xian
University of Idaho

February 10, 2022

Zhegang Ma

Zhegang.Ma@inl.gov



Introduction

• Since 1990s, Idaho National Laboratory (INL) has been providing technical 
assistance to the Nuclear Regulatory Commission (NRC) on data collection and 
computation activities associated with nuclear power plant operating experience 
(OpE) information

• Two “Classical” NRC OpE Projects (2000 – Current)
− Reactor Operating Experience Data (RxOpED) for Risk Applications

• Integrated Data Collection and Coding System (IDCCS)
• Capture, update, and maintain data needed to support data computation 

activities 
• Web display methods        NRC Reactor Operating Experience Data 

(NROD), nrod.inl.gov



Introduction (cont.)

• Two “Classical” NRC OpE Projects
− Computational Support for Risk Applications (CSRA)

• Maintain and update industry and plant-specific system and component 
reliabilities, initiating events frequencies, system/train unavailability, and 
common-cause failure (CCF) parameter estimates

• Update component performance and system reliability studies
• Probabilistic risk assessment (PRA) data calculations web site    

Reliability and Availability Data System (RADS), rads.inl.gov
• Web pages that display updated calculation results        NRC Reactor 

Operational Experience Results and Databases, nrcoe.inl.gov

nrcoe.inl.gov is available to the public.
nrod.inl.gov and rads.inl.gov include proprietary data from Institute of Nuclear Power Operations (INPO) and are 
available to INPO members only.



Introduction (cont.)
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Introduction (cont.)

• One “Exploratory” NRC OpE Project (2020-2021)
− Feasibility Study of Advanced Computational Predictive Capabilities 

Using Artificial Intelligence (AI), Machine Learning (ML) and Analytics in 
OpE

• Explore advanced computational tools and techniques for operating 
nuclear plants

• Assess the using of AI/ML in commercial nuclear industry
• Explore potential applications of AI/ML in nuclear power plants
• An overview of nuclear data & sources was conducted to support the 

above tasks



Introduction (cont.)

• Data vs Information (Merriam-Webster; D. Kelly and C. Smith, Bayesian 
inference for probabilistic risk assessment: A practitioner's guidebook,  2011)

• Data
− Basic, unrefined, and generally observable information
− Factual information used as a basis for reasoning, discussion, or calculation

• Information
− Processed, more refined, and often inferred data
− Knowledge obtained from investigation, study, or instruction

• We used the term “data” here in a general sense that it could include 
“information”



Nuclear Data & Sources – “Classical”

• U.S. Nuclear Industry
− Licensee Event Reports (LERs) – primary source of initiating events (IEs)

• Reactor trip
• Turbine trip
• Loss of offsite power (LOOP)
• Steam generator tube rupture

− INPO Data – equipment failure data
• Pump failed to run
• Valve failed to open
• Total demands
• Total run time



Nuclear Data & Sources – “Classical” (cont.)

• U.S. Nuclear Industry (cont.)
− Monthly Operating Reports – Reactor critical years, shutdown years
− Event Notification Reports …

• U.S. NRC
− OpE Studies/Trends

• Component reliabilities: failure probability, failure rate
• Initiating event frequency
• CCF parameters
• Component/system reliability and trend analysis

− Inspection Reports
− Preliminary Notifications

• International Nuclear Industry



Nuclear Data & Sources – “Exploratory”

• Broader data
− Observed data
− Synthetic data
− Processed data

• OpE data could be plant-specific, generic (national), and generic (international)
• OpE data could be operational data, maintenance data, regulatory data, and 

other data



Nuclear Data & Sources – “Exploratory” (cont.)

• Plant-Specific Operational Data
− Process instrumentation and control (I&C) data
− Plant logs
− Plant condition reports/corrective action programs/internal plant failure reports

• Plant-Specific Maintenance Data
− Maintenance and replacement records
− Inspection, calibration, and surveillance test records



Nuclear Data & Sources – “Exploratory” (cont.)

• Plant-Specific Regulatory Data
− LERs
− Daily/monthly/quarterly/annual reports
− Regular or special inspection reports
− Preliminary notification reports
− Significant enforcement actions

• Plant-Specific Miscellaneous
− Plant design and license-related documents
− Plant operating guidance documents
− Technical specifications
− Plant procedures and guidelines
− Plant business data



Nuclear Data & Sources – “Exploratory” (cont.)

• Generic (National) Data - anonymized raw data or processed data
− INPO IRIS database
− NRC IDCCS database – NROD web app
− NRC LERSearch
− NRC reliability/IE/LOOP/unavailability/CCF database- RADS web app
− NUREG/CR-6928 and updates for generic component reliability and IE 

frequency
− NRC LOOP reports, IE reports, component and system reliability reports
− Department of Energy (DOE) generic component failure database for sodium 

reactor PRAs
− EPRI reports on pipe rupture frequencies, components, shutdown IE 

frequencies
− Human performance data



Nuclear Data & Sources – “Exploratory” (cont.)

• Generic (International) Data
− International Atomic Energy Agency (IAEA) OpE feedback, component 

performance data, reliability data for research reactor PRA
− World Association of Nuclear Operators (WANO) plant performance data, 

performance analysis program
− Organisation for Economic Co-operation and Development/Nuclear 

Energy Agency (OECD NEA)
• OpE feedback
• Fire incidents records exchange project
• Component performance data
• International common-cause data exchange project
• Component operational experience, degradation & aging program
• Cable aging data and knowledge project



Nuclear Data & Sources – How to Better Utilize

• For “classical” data with conventional statistical methods, how can AI/ML be 
utilized to provide new insights?

• For “exploratory” data including existing but less utilized data, and new data 
brought by advanced technologies such as advanced sensors, how can AI/ML be 
utilized to develop new methodologies and provide new directions?



Large Language Models in The 
Nuclear Domain

https://nuclearn.ai

Bradley Fox & Jerrold Vincent

http://nuclearn.ai/


Bradley Fox
Co-Founder & CEO Nuclearn.ai
Brad holds a B.S. Materials Science & 
Engineering. Prior to Nuclearn Brad spent six 
years in Nuclear Engineering and six years in 
Data Science & Software at Palo Verde 
Generating Station.

Jerrold Vincent
Co-Founder & CFO Nuclearn.ai
Jerrold holds a B.S. in Business Economics 
and an M.S. in Computer Science. Prior to Co-
Founding Nuclearn, Jerrold spent ten years in 
Utility Data Science and Business Intelligence 
at Palo Verde Generating Station. 

Inventors of US Patent 11080127 for 
Methods and apparatus for detection 
of process parameter anomalies

Recipients of 2020 Nuclear Energy 
Institute’s Top Innovative Practice 
Award for Process Automation using 
Machine Learning

Current Work

Assessment Readiness (INPO, 
WANO, etc) 

CAP Automation

Multi-Task Large Language Models

CAP Program Human-AI Interface 
Enhancements



What are large language 
models?
Form of NLP, using specialized neural 
networks trained on HUGE amounts of 
data for modeling natural language

Broad (English), domain specific 
(Nuclear) or task specific (Q&A)

Single model can answer questions, 
generate novel passages, classify text, 
perform translations, summarize content

Generative: 

Approximate volumetric 
difference proportional to learning 
capacity difference from 
traditional machine learning 
techniques



Revolution in Natural Language Approaches

Traditional Approach

● Manually clean text to reduce number of 
extraneous words and identify “phrases” 
and “keywords” that matter

● Train Naive Bayes/Boosted Tree/Simple 
Neural Network on features

● Accuracy is typically lower than humans

Large Language Model Era

● Pre-trained models can perform many 
tasks without any additional training

● Models can be “fine-tuned” to specific 
problems to achieve superior performance

● Increased context windows help 
understanding:  1k - 4k token window 

● SuperGLUE NLP Benchmark increase 
from 44.5 using BOW models to 91.0 1

Move data pipeline complexity and feature engineering into the language model 

After performing WO 1234567, maintenance tech 
attempted to stroke the valve.  While manually 
operating the valve, the tech slipped on water left
from a leaking overhead pipe.

1.https://super.gluebenchmark.com/leaderboard



Differences in Natural Language Approaches

Everything becomes language  
● Reframe problems as text.
● i.e. “A large metal component with a bonnet, stem and actuator is a {blank}”

Few or Zero Shot (No task specific training) 
● Tasks are designed as ‘prompts’ 
● I.e. “The main feed pump is in the turbine building. <sep> The atmospheric dump valve is in the 

main steam supply building <sep> The reactor is in the {blank}”

Fine Tuning
● Familiarize model with specific domain language
● Unsupervised or with engineered prompts
● Model updates weights and is specialized in fine-tuned task



What can we do with these models?

● More accurately auto-screen a higher proportion of issues utilizing improved 
classification abilities

● Improve the quality of reports using intelligent autocomplete with Nuclear-specific 
terms and phrases

● Evaluate whether an issue report contains sufficient information as it is being 
written

Multi Task 
Framework



Example Application Writing and evaluating a condition report for quality 
using an LLM









Large Language Models are still improving.

● Next generation predicted to be 200x size 
of current generation

● Models will achieve superhuman 
performance on a broad range of natural 
language and general AI tasks

● Services such as Github Copilot already 
leverage advanced auto-complete 
functionality for millions of users

● Gartner predicts that by 2025 generative 
AI will account for 10% of all data 
produced worldwide

For the first time in the history of Machine Learning, there is no 
evidence of decreasing returns from increasing model size.  The 
only limiting factor is compute resources. 



● Train even larger LLMs 
● Auto-completion and sequencing of 

procedures and work instructions, including 
generation of entire work steps from 
unstructured text

● Open Domain Q&A- “Query” large Nuclear 
texts for answers (e.g. FSAR, design 
documents, etc.)

● Conversational AI user interface
● Automatic summarization of site schedules and 

daily issues

Future Work and Research



https://nuclearn.ai

Questions
?

jerrold@nuclearn.ai
brad@nuclearn.ai

http://nuclearn.ai/


Considerations of Data Integration in 
the Nuclear Power Industry

Feb 10, 2022

Ahmad Al Rashdan
Senior R&D Scientist 



Acknowledgements

• Idaho National Laboratory:
−Chris Ritter
−Jeren Browning
−John Darrington 



Current Practice
• Nuclear power plant data are stored 

in isolated forms in different systems 
with many structures and tools that 
are used independently. 

• No significant data and methods 
exchange across the industry for 
research

Mesh                       Star



End-State Vision



Closing the Gap
• DIAMOND is a data model that was 

developed to enable data sharing across
− various nuclear power plant data and 

tools into one data warehouse. 
− the nuclear power industry and other 

stakeholders including research 
community.

• Deep-Lynx is an intelligent data 
warehouse tool that manages data in a 
centralized schema. 
− It provides users the ability to 

holistically query and understand data 
via the defined schema.

https://github.com/idaholab/DIAMOND

https://github.com/idaholab/Deep-Lynx



Condition Report 

Document
Is A

Artifact
Is A

InformationEntity 
Is A

Data Integration Aggregated Model and 
Ontology for Nuclear Deployment- DIAMOND 

• Consists of classes, object 
properties (relationships), and data 
attributes that are incorporated into 
a hierarchical tree structure. 

• Adopted commonly used models 
such as Basic Formal Ontology 
(BFO) and Lifecycle Modeling 
Language (LML).

• Based on an evolving-development 
approach, meaning it was 
established with a core set of data 
objects and is populated with a 
preliminary level of detail. 

Condition Report Equipment References

System

References

Nuclear FacilityLocated at

Corrective Action 
Program

Part of

https://github.com/idaholab/DIAMOND



What’s next?





Research Data Management
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Research Data Management: Why?

56

Requirement
• This policy applies to Unclassified and Otherwise 

Unrestricted Digital Research Data produced in 
whole or in part by Department of Energy 
federal employees, National Laboratory and 
other Management and Operating (M&O) 
contractor employees, financial assistance 
awardees, other grantees, and other contractor 
entities where the data are produced with 
complete or partial DOE funding, unless 
otherwise prohibited by law, regulation, 
agreement terms and conditions, or policy.



Findable, Accessible, Interoperable, Reusable

57

The first step in (re)using data is to find them. Metadata and data should be easy to find 
for both humans and computers. Machine-readable metadata are essential for 
automatic discovery of datasets and services, so this is an essential component of 
the FAIRification process.



Findable, Accessible, Interoperable, Reusable

58

Once the user finds the required data, she/he/they need to know how they can be accessed, 
possibly including authentication and authorization.



Findable, Accessible, Interoperable, Reusable

59

The data usually need to be integrated with other data. In addition, the data need to 
interoperate with applications or workflows for analysis, storage, and processing.



Findable, Accessible, Interoperable, Reusable

60

The ultimate goal of FAIR is to optimize the reuse of data. To achieve this, metadata and 
data should be well-described so that they can be replicated and/or combined in different 
settings.



Research Data Management: How?

61

RDM often leverages and assortment of tools. Some researchers have program-specific 
repositories and policies, other RDM efforts are more ad-hoc. Storage locations include 
enterprise document management systems, cloud hosted platforms, scientific computing 
storage, tape drives, portable disk drives, thumb drives, and local instrument storage. It is 
unlikely that these solutions as implemented are fully compliant with DOE requirements and  
FAIR principles. 

Efforts have been undertaken to manage INL enterprise data on a global scale with a ‘data 
lake’ architecture. This effort will include some aspect of RDM, but research data typically is 
of a size and format to make it incompatible with these systems. 

INL Advanced Scientific Computing has deployed an initial prototype for perpetual storage of 
research data in order to meet some immediate needs for RDM. This puts data close to 
compute for analysis and potential future reuse.



High Performance Computing offers Perpetual Research Data 
Management and Storage

• HPC has created a Write-Once Read-Many (WORM) data 
storage system available through 
https://ondemand.hpc.inl.gov for storing and curating 
scientific data.

• Scientific data submitted will be maintained in perpetuity.
• A cryptographic hash is created with each submission to 

easily verify all data remain unaltered.
• An embargo access date on data can be provided at 

submission.
• To request permission to submit data to the WORM, send a 

message to hpcsupport@inl.gov.

Research Highlights

HPC Research Data Management System for Scientific 
Data curation now available.

For more information:
Matthew.Anderson2@inl.gov

WORM

https://ondemand.hpc.inl.gov/


Research Data Management: Next Steps

63

• Evaluate best practices from other DOE labs and programs
• Northwest Knowledge Network
• EDX
• DataOne

• Capture INL needs and requirements

• Develop an INL RDM strategy

• Deploy simple RDM tools with minimal impact  to workflows



PHYSICS-INFORMED MACHINE 
LEARNING FOR ENGINEERING 
APPLICATIONS WITH SPARSE DATA: 
BWR MOISTURE-CARRYOVER 
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HAOYU WANG
Nuclear Engineer
Argonne National Laboratory

AI & ML Symposium 7.0 
February 10, 2022



MOISTURE CARRYOVER AND EFFECTS

65

Coolant Boiling

Steam Drying

Un-separated liquid droplets: 
Moisture Carryover (MCO)

Excessive MCO will cause:
• Higher impact and 

corrosion on turbine 
components;

• Elevated radiation dose 
to on-site personnel.

Goal:
• Model MCO using plant 

measured data;
• Predict MCO level for 

un-started cycle.



CHALLENGES
1. Limited and sparse entries of expensive 
data points

• 6 completed cycles;
• 601 experimental measurements;
• ~$2,000 USD / measurement.

2. Excessive number of candidate features
• 7,000+ process variables;
• Covers the power, steam quality, 

rod, flow distribution over entire core

3. Need for accurate predictions for future 
un-started cycle



DANGER OF OVERFITTING

Underfit Normal Overfit

67

With limited amount of data entries, number
of features and model complexity needs to
be constrained.

In addition, the error balance between
training and prediction needs to be
considered.



68

METHODOLOGY

𝑀𝑀𝑀𝑀𝑀𝑀~
1

𝑉𝑉𝐿𝐿𝑛𝑛𝑛
+ 𝑉𝑉𝐿𝐿𝑛𝑛𝑛(𝑛𝑛𝑛,𝑛𝑛𝑛 > 0)Too low or too high flow 

rate (VL), Higher MCO : 

𝑀𝑀𝑀𝑀𝑀𝑀~
1
𝑄𝑄𝑚𝑚

(𝑚𝑚 > 0)Lower initial steam quality 
(Q),Higher MCO : 

2. Hyper-parameter optimization (Genetic
Algorithm), balancing training and prediction
error:
• Leave-one-out and Cross-test: train on 5

cycles, test on 1, then rotate;
• Optimize for overall minimum cross-test

error.

Neural networkNon-linear summation 
nature of MCO:

1. Physics-informed feature and model selection:



69

RESULTS
1. Leave-one-out and Cross-test result:
• Hyper parameters were optimized towards 

minimized overall cross-test error;
• Physics-informed feature with optimized 

hyper parameters can capture the baseline 
trends and spikes in each MCO trajectory

2. New cycle prediction:
• The trained model can predict the MCO in 

the training range (< 0.15%) with low error;
• The sudden spike is poorly predicted, 

which is caused by a severely asymmetric 
in-core flow and rod distribution never seen 
in the training data.



 Plant experimental data + AI is solving real problems in nuclear energy:
– Physics-informed feature selection on sophisticated systems;
– AI modeling and hyper parameter optimization on sparse reactor data;
– Target oriented cross-test scheme;
– Even, prediction of the future.

 Challenges:
– Data diversity and Model reliability;
– Time and Cost during data collection, and cost-effectiveness;
– New-physics supported by Data;

70

CONCLUSION

REFERENCES
 H. Wang, J. T. Gruenwald, J. Tusar & R. Vilim "Moisture-carryover performance optimization using 
physics-constrained machine learning." Progress in Nuclear Energy 135 (2021): 103691.
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Deceptive Infusion of Data (DIOD):
Novel Data Masking Paradigm for High-Value Systems
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Data in Nuclear

Credits: Ahmad Al Rashdan, Idaho National Laboratory



DIOD Paradigm: Key Objectives

› How to successfully mask 
industrial data while 
promoting collaboration?

– Protect privacy of owner

– Preserve data utility with 
respect to AI task

– Prevent reverse-engineering 
efforts, i.e., control what you 
want them to see

https://www.tolpagorni.com/blog/professional-networking-and-collaboration

https://www.tolpagorni.com/blog/professional-networking-and-collaboration


75www.kaggle.com, https://openml.org

Open-Source Data

http://www.kaggle.com/
https://openml.org/


Current R&D efforts

› Industrial Data
– Differential privacy

› Insert noise to cause uncertainty in data
› Affects the statistical properties of the data

– Privacy-preserving computation
› Allows users to perform computations on data in encrypted form
› Encryption is extremely expensive, not scalable for vast amounts of data

2 4 6 6
decrypt



DIOD Data Masking Paradigm

– Splits dataset into fundamental metadata and inference metadata
› Fundamental metadata denotes information pertaining to system identity
› Inference metadata denotes information relevant for target AI/ML task

– Obfuscates proprietary system identity by mounting inference metadata onto 
fundamental metadata of a different generic system; generate DIOD version of 
data

– Cannot reverse-engineer DIOD data to decipher system identity as 
transformation is one-way

– Efficient and scalable after an initial one-time investment into constructing 
ROMs

– Can be applied to obscure sensitive data while maintaining inference –
classification, regression, clustering etc.



Masking: Fundamental Metadata

Proprietary

Generic



Mutual Information in DIOD

– Mutual information denotes the average gain in information about one 
quantity with knowledge of another

𝐼𝐼 𝑋𝑋,𝑌𝑌 = 𝐻𝐻 𝑋𝑋 − 𝐻𝐻 𝑋𝑋 𝑌𝑌 = 𝐻𝐻 𝑌𝑌 − 𝐻𝐻(𝑌𝑌|𝑋𝑋)

– Invariant to addition or removal of metadata irrelevant to the classification task

– Invariant to invertible transformations of the metadata

– Ensures same theoretical inference on original and DIOD version

– Applications
› Classification: Preserve mutual information between original dataset and corresponding 

labels in the DIOD version
› Regression: Preserve mutual information between original dataset and inferential 

parameters in the DIOD version



Example Results
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Example Results

𝑔𝑔1 𝛽𝛽 = 𝑚𝑚

𝑔𝑔2 Λ = 𝑙𝑙

𝑘𝑘∗ = 𝑘𝑘

𝑓𝑓 𝑘𝑘∗ = 𝑛𝑛

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝐶𝐶1 =
𝜌𝜌 − 𝛽𝛽
Λ

𝐶𝐶2 =
𝛽𝛽
Λ

𝐶𝐶3 = 𝜆𝜆

𝐶𝐶4 = −𝜆𝜆

𝛽𝛽

Λ

𝜆𝜆#

𝑃̇𝑃 =
𝜌𝜌 − 𝛽𝛽
Λ

𝑃𝑃 + 𝜆𝜆𝜆𝜆

𝐶̇𝐶 =
𝛽𝛽
Λ
𝑃𝑃 − 𝜆𝜆𝜆𝜆

𝑚𝑚𝑥̈𝑥 + 𝑙𝑙𝑥̇𝑥 + 𝑘𝑘𝑘𝑘 + 𝑛𝑛𝑥𝑥3 = 0

#Suppose 𝜆𝜆 is irrelevant to the classification task



Preliminary Results: Inference Metadata
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Example Results for Classification:

Reactor 
Data

Label 1Label 0 Random

40 % 40 % 20 %

DIOD Data

Label 1Label 0 Random

40 % 40 % 20 %

Inference is preserved for the task of classification



Example Results for Classification:
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Example with Images
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“Deceptive Infusion of Data (DIOD) for Nuclear Reactors,” 
Transactions of the American Nuclear Society, 125(1), pp. 264-
266, December 2021.

› Arvind Sundaram, Hany S. Abdel-Khalik, and Ahmad Al Rashdan, 
“Deceptive Infusion of Data (DIOD): A Novel Data Masking 
Paradigm for High-Valued Systems,” Nuclear Science and 
Engineering, November 2021 (under review)
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Analysis and Handling of Big Data in 
Cosmology: AI/ML to the Rescue
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ML/AI Symposium 7.0 “Data - What is it good for!”



Exceptional data — exceptional challenges
Next-generation Cosmological Surveys

▪ Upcoming surveys such as Rubin’s 
LSST, Euclid and Roman will collect a 
treasure trove of data

▪ Mining the data and interpreting them 
will be a major challenge

▪ For cosmology: Modeling and 
simulations will be the key to pushing 
our understanding of the dark Universe 
to the next level

▪ On the horizon for help: Exascale 
supercomputers and innovative AI/ML 
methods

• Hardware/Hybrid Accelerated Cosmology 
Code (HACC) and CRK-HACC have been 
developed to run on all currently available 
computing platforms at scale

• Large volume/high resolution gravity-only 
simulations and hydrodynamics simulations 
to model large-scale survey data

• Aurora will arrive at Argonne in 2022 to 
enable new extreme-scale simulations



New tools for measurements, predictions, and analysis
AI/ML for Cosmological Surveys

▪ Size and complexity of survey 
data sets drives AI/ML 
requirements

▪ Applications include image 
classification, lens 
characterization, fast sky 
catalog/image generation, fast 
predictions for summary 
statistics, systematics 
identification and mitigation, 
likelihood estimation, ---

▪ ‘AI at Scale’: Need to speed up 
current state-of-the-art by orders 
of magnitude 

Ubiquity of AI/ML techniques in cosmological survey workflows

12



Transforming large simulation suites into precision predictions 
Precision Emulation

▪ Challenge: To extract cosmological constraints from observations, need to run Markov Chain 
Monte Carlo code; input: > 100,000 predictions

▪ For nonlinear probes (clusters, small scale predictions …): Expensive simulations are 
needed to achieve the required accuracy; while we can generate O(100) simulations, 100,000 
would take years

▪ Current strategy: Fitting functions, accurate at the 10% level, need 1%!
▪ Our alternative: Emulators, fast prediction schemes built on a manageable set of high-accuracy 

simulations
▪ “Ingredients”: Optimal sampling methods for model selection, efficient representation of the 

simulation outcome, powerful interpolation scheme

The Cosmic Emu



Transforming large simulation suites into precision predictions 
Precision Emulation

▪ Step 1: Design simulation campaign, rule of 
thumb: O(10) models for each parameter

▪ Step 2: Carry out simulation campaign and 
extract quantity of interest, e.g. cluster 
mass function, power spectrum

▪ Step 3: Choose suitable interpolation 
scheme to interpolate between models, we 
use Gaussian Processes 

▪ Step 4: Build emulators
▪ Step 5: Use emulator to analyze data, 

determine model inadequacy, refine 
modeling strategy …

The Cosmic Emu

Example for Step 1: 
Optimal sampling for 5 
cosmological parameters 
and 32 models

Example for Step 5: Power spectrum 
variation for 5 parameters 
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Finding rare targets in very large data sets
Galaxy-scale Strong Lensing

▪ Deep learning-based modular pipeline for image 
cleaning/de-noising, lens identification, and lens 
characterization

▪ Trained on very large simulated data set
▪ Tested on HSC strong lens data with good results, 

better than 90%
▪ Key next issue: reducing false-positives

Strong lensing pipeline structure (Madireddy et al., 2019)

S1: noisy blended simulation, S2: noiseless blended 
simulation, I2: output from denoising module, S3: 
noiseless deblended simulation, I3: output from 
deblending model 



Creating realistic training data
Photometric Redshift Estimation

▪ Training-based photometric redshift 
estimation requires large numbers of 
SED templates for galaxy colors

▪ Number of observational templates is 
limited to bright sources

▪ Combined training sets based on 
observations and a robust generative 
model for emulating galaxy colors to fill 
data space not covered by observations

▪ Method outperforms techniques based 
only on observational data Photometric redshift estimation pipeline 

validation, synthetic data generation only 
(Ramachandra et al., 2021)



Exciting times ahead!
Summary

▪ Upcoming surveys will generate 
complex data sets that will pose major 
new analysis challenges 

▪ Exascale supercomputers will allow us 
to create the most detailed simulations 
so far, however, more is needed

▪ Innovative, carefully applied AI/ML 
methods will be invaluable to
▪ Provide precision predictions
▪ Enable us to find rare objects
▪ Generate realistic synthetic data



Improving the Quality of Imbalanced 
Datasets using Generative Machine 
Learning Models

Jared Wadsworth, INL



Real world data is almost never balanced



Problems of Imbalanced data

• Poor accuracy on smaller class
• 95% real 5% fraud
• Model predicts 100% fraud
• (0+95)/(0+95+0+5)=0.95 or 95%



Typical Solutions
• Under / Over-Sampling
• Boosting
• Generative Models



Over-sampling

Pros:
• Equal weighted classes
• Uses real data
• Easy

Cons:
• Overfitting on smaller class
• Increased importance of smaller 

class decision boundary



Under-sampling

Pros:
• Equal weighted classes
• Uses real data
• Easy

Cons:
• Loss of data
• Loss of diversity



Weighted loss / Boosting

Pros:
• No duplication or loss of data
• Uses real data
• Built-in balancing of classes

Cons:
• Increased risk of overfitting
• Increased training time  resources



Generative Models
• SMOTe
• Autoencoders
• Variational Autoencoders
• Generative Adversarial Networks



SMOTe

Pros:
• No duplication or loss of data
• Prevents overfitting

Cons:
• Uses synthesized data
• New data not guaranteed to be in same 

distribution
• Can be computationally expensive



Autoencoders

Pros:
• No duplication or loss of data
• Prevents overfitting
• Data drawn from same distribution

Cons:
• Uses synthesized data
• Can be computationally expensive
• One-to-one mapping of data only 

allows for doubling data



Variational Autoencoders

Pros:
• Any amount of data
• Better utilizes latent space
• Small changes in latent space result 

in small changed in synthetic data

Cons:
• Increased Complexity and Training 

time
• Requires a minimum size of smaller 

dataset



Generative Adversarial Networks (GANs)

Pros:
• Any amount of data
• No duplication or loss of data
• Prevents overfitting
• Data drawn from same distribution

Cons:
• Increased Complexity and Training 

time
• Mode collapse
• Failure to converge
• Vanishing Gradients



Conclusion

• Each method is applicable in different circumstances

• No Free Lunch

• If you can’t gather more data, Generative Methods may be a good way to do so 
with reasonable potential to increase your metric
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