Big Data, Machine Learning, Artificial Intelligence

INL - ML & Al Symposium
April 17, 2020

Purpose of Meeting:
e Introduce the topic of ML and Al to INL researchers
e Provide examples of how ML an Al are being applied across other industries
e Discuss current ML & Al research and capabilities at INL

e Discuss planned activities, including engagement opportunities and collaboration
opportunities

Presentations will include:
e Provide overview on Topic Area;
e Describe the status of industry
e |dentify Issues (if any) and potential impact

e High level discussion of planned activities and outcomes




Big Data, Machine Learning, Artificial Intelligence

Agenda for Machine Learning and Artificial Intelligence Symposium

Friday, April 17th, 2020;

11:00 Welcome, Introductions, and Agenda Curtis Smith
11:15 What is Al? R. Kunz

11:25 Al, ML, and Statistics, oh My! N. Lybeck
11:35 Modeling Human Cognition: It’s Not All Machine Learning R. Boring
11:45 Smart Reactors Humberto Garcia
11:55 Al in Robotics and Applying Natural Connections V. Walker
12:05 Al as Automation K. Le Blanc
12:15 ML in current projects V. Agarwal
12:25 ML in current projects A. Al Rashdan
nas | e e S ome
12:45 zz\:i::‘eg engineering of stripped binaries using scalable deep M. Anderson
12:55 Closeout Curtis Smith
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Curtis Smith

Group: Division Director for Nuclear Safety and Regulatory
Research

Education: BS, MS, and PhD in Nuclear Engineering at ISU and
MIT

Presentation Overview
Motivation for AI/ML in science, math, and engineering
« How AI/ML has advanced in the science, math, and
engineering communities and how these advances may
be used with INL applications such as computational
risk assessment.
« These topics provide an insight into the potential for
advanced analysis and operations for complex systems.
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My Motivation for AlI/ML in
Science, Math, and Engineering

Dr. Curtis Smith, Director
Nuclear Safety and Regulatory Research Division
Idaho National Laboratory

A discussion on:
How AI/ML has advanced in science, math, & engineering

How these advances may be used with INL applications such
as computational risk assessment

The potential for advanced analysis and operations for
complex systems



Perhaps the first
autonomous
vehicle
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What is Machine Learning/Artificial Intelligence (ML/AI)?

From Source of All Knowledge™ - Wikipedia

Artificial intelligence (Al) is intelligence demonstrated by machines

Study of "intelligent agents": device that perceives its environment and takes actions
that maximize its chance of successfully achieving its goals

Machines that mimic "cognitive™ functions that humans associate with the human mind,
such as "learning" and "problem solving"

Machine learning (ML) is the scientific study of algorithms and statistical models to
perform a specific task without using explicit instructions, relying on patterns and
inference instead

Subset of artificial intelligence

Builds a mathematical model based on sample data ("training data“) to make predictions

or decisions without being explicitly programmed to perform the task

Closely related to computational statistics, which focuses on making predictions using
computers



A question - can we use Al/ML for Science, Math,
and Engineering??
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Examples of current ML and Al applications

Symbolic reasoning to differentiate & integrate math

Neural network used 80 million examples of 1st- and 2"-order differential equations & 20
million examples of integrated by parts , o YW B

How well does it work? Y 7 (“162° + 11247 — 20425 + 2825 — 2 + 1)1/
Significantly outperforms Mathematica (on integration, close to 100% accuracy)

Mathematica reaches 85%, Maple and Matlab perform less well
In many cases, conventional solvers unable to find a solution in 30 seconds
The neural net takes about a second to find its solutions

https://www.technologyreview.com/s/614929/facebook-has-a-neural-network-that-can-do-advanced-math/

AlphaGo and AlphaGo Zero to play Go
AlphaGo defeated 18-time world champion Lee Sedol 4 games to 1

Used game tree search, neural network trained on expert human games, second
neural network for board positions, and additional Monte Carlo rules

AlphaGo Zero used same tree search algorithm, but then single neural network trained
without any human games

AlphaGo Zero defeated AlphaGo 100 games to 0

https://medium.com/ww-engineering/alphago-zero-a-brief-summary-dcff16ba3064
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How can these approaches help future risk-informed applications?

- Recent nuclear power challenges have been mostly on economics and safety
— Need to provide new cost-beneficial approaches to safety via modern methods/tools/data
— We want to attract the next generation of scientists/engineers via these new approaches

- Computational Risk Assessment (CRA) is a combination of
— Probabilistic (i.e., dynamic) scenarios where they unfold and are not defined a priori
— Mechanistic analysis representing physics of the unfolding scenarios

- ldea - CRA to produce “synthetic data” for ML
— ML requires training data — however risk & reliability have a small set of “failure” data
— CRA can explore rich space of normal & off-normal conditions
— CRA can produce very large sets of synthetic data

- ldea -> Digital regulator
— Agent-based systems for oversight of operations
— CRA + real-world sensors = next-gen regulation
- Keep an independent, digital presence in systems




“And | told him, Al and ML
aren’t the thing.

They’re the thing that gets
us to the thing.”

(See Halt and Catch Fire)

Learning Internal Representations
by Error Propagation

DAVID E. RUMELHART, GEOFFREY E. HINTON, and RONALD J. WILLIAMS

THE PROBLEM

We now have a rather pod understanding of simple two-lay iative rks in which
a set of input patterns arriving at an input layer are mapped directly to nset of output patterns
at an output layer. Such networks have no hidden units. They involve only inpur and owpur
units. In these cases there is no internal represemtation. The coding provided by the external
world must suffice. These networks have proved uscful in a wide varicty of applications (cf.
Chapters 2, 17, and 18). Perhaps the essential character of such networks is that they map simi-
lar mput pmcm: to similar tmtpu! patterns. This is what allows these networks to make rea-

ions and reasonably on patterns that have never before been
pruenled The similarity of pal!ml in a PDP system is determined by their overlap. The
overlap in such networks is determined outside the learning system itsclf—by whatever pro-
duces the patterns.

The constraint that similar input patterns lead to similar outputs can lead to an inability of
the system to learn certain mappinp from input to output. Whenever the representation pro-
vided by the outside world is such that the similarity structure of the input and output pat-
tcrns are very different, a nctwori without internal repmemmom (i.e., a network without
hidden units) will be unable to p the y gs. A classic example of this case
is the exclusi (XOR) p blem illustrated in Table 1. Here we scc that those patterns
which overlap least arc supposed to g identical output values. This problem and many
others like it cannot be performed by networks without hidden units with which to create
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Curtis.Smith@inl.gov

Thank you!




Ross Kunz

Group: Advanced Analytics

Education: PhD Statistics

Work focused in: Machine learning for chemistry and physics
(catalysts, batteries, materials)

Presentation Overview
What is Al?
« Overview of Al and the connection to
Modeling/Simulation
* Understanding of complex data sets and discovery of
new information
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Machine Learning & Artificial Intelligence
Symposium
April 17, 2020

Ross Kunz
B652 Advanced Analytics
What is Al?
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Definition

« The capability of a machine to imitate intelligent human behavior

THIS 15 YOUR MACHINE LEPRNING SYSTEM? 1. Data (kind of a big deal)
YUP! YOU POUR THE DATA INTO THIS BIG 1. Good
PILE OF LINEAR ALGEBRA, THEN COLLECT
THE ANSLIERS ON THE OTHER SIDE. 2. Bad
WHAT IF THE ANSLERS ARE LIRONG? ) 3. Ugly
JUST STIR THE PILE UNTIL 2. Domain problem
THEY START LOOKING RIGHT

1. Data Structures
2. What information can be leveraged
3. No free lunch!
3. Results
1. I don’t care, predict the cat!
2. The journey, not the destination that
matters

Source: xkcd.com



Connection to Science

 Little to No Data

« Strong Assumptions
» Highly Informative
» High Computation

Physics to

physics

Data Analysis Spectrum
‘ .

Surrogate
modeling

+ Extreme Amounts of Data
 Little to No Assumptions
* Highly Predictive

» High Computation

Experimental

Discovery




Types of Problems

Meaningful
compression

Big data
Visualisation

_

Image
Sfructure Classification
Discovery Feature ® Customer
@ Elicitation  Fraud @® Retention

Detection ®

DIMENSIONALLY : .
REDUCTION CLASSIFICATION @® Diagnostics

® Forecasting

Recommended UNSUPERVISED SUPERVISED
Systems LEARNING LEARNING ® Predictions

CLUSTERING REGRESSION

Targetged MACHINE ® Process

Marketing Optimization

LEARNING o
®
Customer New Insights
Segmentation

REINFORCEMNET
LEARNING

Real-Time Decisions @ ® Robot Navigation
Game Al ® @ Skill Aquisition
{ J
Learning Tasks

Source: http://www.cognub.com/index.php/cognitive-platform/
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The goal of explainable Al

Explainable Al

Training Learning Learned Output User with
Data Process Function a Task
Tomorrow

This is
@ a cat It has fur,
} @ ’ ’ } whiskers
u and claws
Training  New Learning Explainable Explainable Interface User with
Data Process Model aTask

Source: Al and Machine Learning: Key FICO Innovations



Example Projects

TAP reactor catalysis
machine learning

Medford et al. Extracting knowledge from
data through catalysis informatics. 2018

Battery life prediction /
mechanism estimation

E‘"TL Refine CESttl?re
Rebecca
Fushimi
Ross Kunz 5

i ata
Yixiao Wang Machine Housing
Zongtang Fang Learning and
Rakesh Batchu Transfer

Sagar Sourav
James Pittman

\ Life

Modeling

\ ' A 4 MIduho National Laboratory

ML

Idoho Nofioncl Laboratery

Eric Dufek
Ross Kunz
ZonggenYi
Matt Shirk
Kevin Gering
Hypo Chen
Tanvir Tanim
Dave Black
Qiang Wang
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NATIONAL RENEWABLE ENERGY LABORATORY

Kandler Smith
Paul Gasper




Questions?

Clean. Reliable. Nuclear.
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Nancy Lybeck

Group: Department Manager, Instrumentation, Controls, & Data
Science

Education: Ph.D. in Math from Montana State University.
Fifteen-plus years working with data; 10 at INL

Work focused in: Several projects, including developing a
Risk-Informed Predictive Maintenance Strategy and the
Nuclear Data Management and Analysis System

Presentation Overview
Artificial Intelligence, Machine Learning, and Statistics, Oh My!
« Alight-hearted look at the perceived rivalry between
data science and statistics.



Machine Learning & Artificial Intelligence
Symposium
April 17, 2020

Nancy Lybeck, PhD
Instrumentation, Controls, & Data Science
Al, ML, and Statistics, Oh My!
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We all love a great rivalry!

[~

®.4,)\ THE BEATLES
- j VS G Data
I A s
THE ROLLING ‘ 9% sSciexnce
STONES 2 ) ._

Statistics
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What is Data Science?

INFORMATION
TRANSFORMED
INTO NUMBERS

DOMAIN
EXPERTISE

N\

OUTPUT

INPUT

ROOTS /
BASIS

@\T1@cSB

Comic Strip Blogger December 2017

Source: Palmer, Shelly. Data Science for the C-Suite.
New York: Digital Living Press, 2015. Print.
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Discussion

Statistics

Machine Learning

» Focus on Inference

« Based on probability spaces

» Creating and fitting project-specific probability
models

« Often used with tall data

» Formalizes understanding of system behavior

« Tests a hypothesis about system behavior

« Computes a quantitative measure of confidence
that a discovered relationship describes a 'true’
effect that is unlikely to result from noise

» Generally considered interpretable

Focus on Prediction

Based on statistical learning theory

Using general-purpose learning algorithms to find
patterns in often rich and unwieldy (nonlinear) data
Particularly helpful with wide data

Makes minimal assumptions about the system
Does not require a carefully controlled experimental
design

Accuracy determined with test data set (in the case
of supervised learning)

Can be difficult to interpret

Example from Environmental Science: We might use a statistical model to determine whether a sensor signal
response to a certain kind of stimuli is statistically significant, as well as use data from an array of 20 additional

sensors to predict the response of the sensor.

The Actual Difference Between Statistics and Machine Learning, Matthew Stewart, 2019.

Statistics Versus Machine Learning, Bzdok et al., Nature Methods 15, 223-234 (2018).
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Looking Ahead
* It’s all about the data ...
- We need statisticians and data scientists!

- Hold on to the rivalry for fun and for lighthearted teasing, but
don’t let it get in the way of our ultimate goal: doing great

science! WS
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Questions?

pNancv L}p&eck@m] g’ov
~ (208) 2'06 7232 f_.‘
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Ronald L. Boring

Group: Department Manager, Human Factors and Reliability
Education: Ph.D. in Cognitive Science from Carleton University
Work focused in: Human factors and human reliability

Presentation Overview
Modeling Human Cognition: It’s Not All Machine Learning
 While Al is widely used for industry applications, one of
its first uses was to mimic human cognition. The earliest
Al techniques were rule based to try to capture the
psychology behind human decision making.



Machine Learning & Artificial Intelligence
Symposium
April 17, 2020

Ronald Laurids Boring, PhD
Human Factors and Reliability Dept.

Modeling Human Cognition:
It's Not All Machine Learning

|daho National
Laboratory
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Why Human Cognition?

1956 Was Watershed Year

* Nuclear History
— Period between USS Nautilus and Shippingport

- Two Congressional Hearings on Automation

- Dartmouth Summer Workshop on Artificial Intelligence

— “We propose that a 2-month, 10-man study of artificial intelligence be carried out during the
summer of 1956 at Dartmouth College in Hanover, New Hampshire. The study is to proceed
on the basis of the conjecture that every aspect of learning or any other feature of intelligence
can in principle be so precisely described that a machine can be made to simulate it.”

Birth of Al, featuring founders like Marvin Minsky, John McCarthy, Claude Shannon, Allen
Newell, and Herb Simon
+  Symposium on Information Theory at MIT on September 11, 1956
— Birthplace of information processing theory and study of cognition
— Featured George Miller, Noam Chomsky, Allen Newell, and Herb Simon, among others
- Birth of Al and cognitive psychology occurred at the same time, because they were
interested in the same problems
— Deconstructing human thinking into information allowed us to make computer models of it




Why Human Cognition? .

Basic Information Processing Model

Elaboration, Production of
1956 Was Watershed Year STIMULUS manipulation, appropriate
Nuclear History selection and storage responses
Period between USS Nautilus and Shipp "' T
Two Congressional Hearings on Automatio INPUT STORAGE & OUTPUT

Dartmouth Summer Workshop on Artificial PROCESSES P RELATED . PROCESSES

“We propose that a 2-month, 10-man stu SRR

summer of 1956 at Dartmouth College in l ‘

on the basis of the conjecture that every ~ Perception and .
can in principle be so precisely describec¢sensory registration RESPONSE

Birth of Al, featuring founders like Marvin
Newell, and Herb Simon

Symposium on Information Theory at MIT on Sep? - 11,1956
Birthplace of information processing theory 2. study of cognition
Featured George Miller, Noam Chomsky, Allen Newell, and Herb Simon, among others

Birth of Al and cognitive psychology occurred at the same time, because they were
interested in the same problems

Deconstructing human thinking into information allowed us to make computer models of it




Al is More Than Machine Learning
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Two Types of Al

Good Old-Fashioned Al (GOFAI)

Symbolic logic systems to represent basic elements of human thought like language,
numbers, or goals

Expert systems featuring if-then logic
General Problem Solver created by Newell and Simon in 1959
Much of focus was not to create learning but to capture human-like intelligence

Neural Networks dendrites eus
Perceptron developed in 1958 as approximation of single-cell neuron ; v\‘;{, ) @4 /f:\
By 1960s, mathematical algorithms like backpropagation - ~ 7
developed to allow perceptrons to learn through training AN J
Machine learning BN, e
Multiple perceptrons chained together to create neural networks

More layers of neural networks chained to together to create in out
deep learning

Different Uses
GOFAl is good at following rules and making decisions
Neural networks are good at pattern recognition when trained




Why is Human Cognition Relevant to Al?
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Humans Are Better At-Machines Are Better At (HABA-MABA)

Humans are (still) better at some things
Generalization and flexibility
Judgement and decision making
Responding to novel events and degraded conditions
Creativity and problem solving
Sentience and consciousness

Machines are better at some things
Performing routine, repetitive, or precise tasks like monitoring
Multitasking
Quick responses

What Are the Goals of Al?
Narrow Al
Perform a simple task, like automating a safety valve
These are simplistic tasks that don’t need to be human-like to be successful
General Al
Perform the task of a human like replacing a control room operator or driving a car
These are complex tasks that aspire to human cognition




The Future of Cognition and Al
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Principles for the Intersection of Humans and Al

Al = Knowledge + Learning

To say someone is intelligent does not mean they are good learners, it means that they are
knowledgeable

Al is a mix of GOFAI (knowledge) and neural networks (learning)
It takes both to create something like autonomous vehicles: see the road + follow the
rules
Machine Learning Has Limits
We think of ML as producing superintelligence, but most applications are really narrow Al

Humans are the Users of Al

Sometimes we seek not to replace the human but enhance or complement them (e.g.,
predictive maintenance)

Need to develop explainable Al that humans can understand and work with

How does regulator approve Al for safety applications like nuclear when Al isn’t
transparent in what it's doing?

Data visualization—representing patterns out of complexity—is one form of usable Al

Humans are Big Data
Human performance and knowledge can still be harvested to improve Al
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Questions?

Human Factors & Reliability Department
Nuclear Safety and Regulatory Research Division
4 N Idaho National Laboratory

W, ronald.boring@inl.gov
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Humberto E. Garcia

Group: Systems Science & Engineering
Education: PhD

Work focused in: Extensive experience in advanced systems
methods for the design, integration, optimization, and operation of
cyber-physical systems (CPS)

Presentation Overview
Secure Embedded Intelligence (SEI) in Smart Nuclear Systems
* Research needed / Gaps for implementing SEIl in Smart
Reactor Systems
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Secure Embedded Intelligence (SEI)
In Smart Reactors

Topics: multi-scale, multi-layered computing, hybrid physics-based, data-
driven M&S, digital twins (DT), integrated state awareness (ISA), adaptive
observation & actuation, intelligent controls, automated reasoning, digital assets

Humberto E. Garcia, PhD
Cyber-Physical Systems Integration, Optimization & Resilient Controls

Advanced + Digital + Antifragile + Agile + Security gmg Smart
Sensors Twins Capabilities ® Optimization ¥ by Design ™ Reactors

J

Y

\ Within a multi-scale, multi-layered (distributed) architecture

INL Machine Learning & Artificial Intelligence Symposium
April 17, 2020

Related reading:
* H.E. Garcia, S.E. Aumeier, A.Y. Al-Rashdan (2020). “Integrated State Awareness Through Secure

Embedded Intelligence in Nuclear Systems: Opportunities and Implications,” Nuclear Science and
Engineering, Vol. 194, pp. 249-269, April 2020.

* H.E. Garcia, S.E. Aumeier, A.Y. Al-Rashdan, B.L. Rolston (2020). “Secure Embedded Intelligence in
Nuclear Systems: Framework and Methods,” Annals of Nuclear Energy, Vol. 140, 2020, 107261.
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Why it is Important to industry

Operations & maintenance (O&M) cost reduction & simplification
— Economics (e.g., 15 - 50%* fixed O&M cost reduction)
— Real-time asset condition assessment
o from preventive to predictive
o Predictive maintenance (PdM), proactive asset performance/health management (APM)
o Early anomaly/health detection, diagnostics & prognostic of systems, structures, components (SSC)
— Improved reliability, availability, maintainability, safety, security

Market expansion, application flexibility, nuclear industry sustainability
— Flexible operation
— Remote and transportable deployments
— Broad range of “plug-and-play” (commercial and emergency) applications

Design and operations margin reduction and optimization
— Simplicity and uncertainty & imprecision tolerance

Unprecedented system-state knowledge enabling:
— Adaptive control (e.g., idle, startup, shutdown), automated reasoning, decision-making
— Recognition & classification of abnormal and degradation signatures

— Inherent, proactive cybersecurity and cyber-defense by design
Real-time metric (e.g., risk) quantification, optimization, management
Human reliability and productivity enhancement

— Integrated, precision data availability and presentation / visualization
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Current trends in diverse industries
Vehicles w/ limited “automated processing™ Autonomous “smart” vehicles

TR = ¥

B |

Is autonomy of smart reactors the goal ? or rather to identify fundamental attributes a
system should be equipped with to meet desired (smart) functionalities (e.g., autonomy) ?

:r; To achieve “smart” functionalities
IS ‘ S= (e.g., autonomy, asset health

assessment)

Knowledge Reasoning

SEI: Secure embedded intelligence ISA: Integrated state awareness
Design for optimal levels of ISA & SEI to achieve objectives
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Phased implementation of SEI-ISA in advanced nuclear systems

Add fundamental capabilities

V&S @%a DT: Nested Digital Twin (model-based + data-driven, multiscale, multilayered)
N
Knowledge _ . ..
By To achieve fundamental functionalities
M&S ’\Q .
ISA » Estimate (e.g., current system state)
* Predict (e.g., future system state)

| | » Understand (e.g., consequences of stressors, actions)

M&S {%‘\ » Learn (e.g., relationships from observed patterns)
- » Decide “optimal” paths forward (e.g., control actions)
@av Disruptive advances Disruptive potentials
| o multi-scale / multi-layered computing v* Cost
"%‘9\ (HPC & edge computing) v’ Simplicity
SEI » physics-based, data-driven hybrid v Flexibility
: R ) M8ILS ;and an(;lydsus _ b _ v’ Systems optimization
Oy easoning. = ;ncl;ugiig%/ere adaptive observation & -, Inherent security, resiliency
T v’ System-state transparency

 intelligent controls (IC) & supervision
» agile optimization (AO)
» Al-enhanced capabilities (AC)



Smart Reactor Functions

ISA + SEI

-

- -
\=m> Idaho National Laboratory

Intelligent nuclear assets: Multi-scale, multi-layered integration
of advanced monitoring, control & supervision (MCS) functions

Human Agent

s e S TP ET T — .

: Supervisory level

: P ry Integrated State Awareness & Automated

: Reasoning and Decision Making {%‘\*

Evaluate, reason, decide, learn, reconfigure, plan

: lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll des s s N IR EE I NN NN NN NN NN EEEEEEEEEEEEEEEEEEEEEEEEEEE
U emswnmsnnnsnnnsntnantnstnnstnnsnnn e tnnte anenstnnttnnsfenastnnntanttnngtnntnrantasntantrnns | antnsttnsntfantunsrnssrnstrnsarusarunsrassraserustenses
: Monitoring & control level Multiscale, multilayered

- | Intelligent & Resilient Controls '€ Knowledge Databases 4| Condition & Pattern Assessment

Fid N e AL Physics-, data-driven, hybrid, L Diagnostics/ Prognostics {C%-&\
s e (i, Myl {% 2 digital twins (DT) {%ﬁ o Risk & health management N

: Mission

. Objectives, KPI, metrics, requirements

AEsEEEEEEEEEEEEEEE NN NN NS S NN NN NN NN NSNS NSNS NSNS EE NSNS E NSNS EE SN SN IEE SN NSNS S NSNS SN NSNS NSNS E NN SN EEEEEE SIS E NSNS NN SN EEEEEEEEEEEEE

Passive/ proactive

Device network « level N 1 / LN 1 /
Actuation Network Digital security Digital resiliency
Communication

SRT———— l ....................

Sensor Network

Actual, analytical, optimized layouts

R O, OO

e

pr

Nuclear Systems, Structures, Components (SSC)

(under monitoring & control)

—

L

3

-
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Implications for the nuclear in&ﬁstry

SEI/ISA Physical

Assets

ISA - SEI support
Knowledge — Reasoning

Smart functionalities / Advanced Outcomes

« autonomy » flexible operation « self-validation
o self-optimization < self-maintenance » self-healing
o self-configuration e self-protection * learning & explanation

SEI: Secure embedded intelligence ISA: Integrated state awareness



e ‘
\ \EQL Idaho National Laboratory

Research opportunities for implementing SEI
In smart reactor systems

Hyper-layered

Intelligent

modeline & I B autonomous
digital lg . frameworks &
igital replication et Products

fﬂf@g?‘ﬂf@d&'fafe £ . < Secure E?ﬂbedd@d ® ArChlt@CtureS
Awareness (ISA) / ¥ i anccic dél? \ Intelligence (SEI) * Framewo_rks_

/ /" computing & A «  Information infrastructures

{ i \ \

/' communication o * (edge-, system-) methods,

Embedded smart f
sensing & |
actuation devices

Regulatory research |

Augmented
analytics &
machine learning

models, agents, algorithms
Hardware / software
capabilities and devices
Design impacts

» Testbeds
\ ‘. Integrated testing * Pilots

Smart -.\\ \\x‘,__hh_platforms_j_.__ . Digfm‘[ Securz’ty . Standards

Jfunctionalities N & Resiliency e Policies

Human-machine
interfaces

Adapftive security
architectures




Questions?
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Victor G. Walker

Group: Mobility Systems and Analytics

Education: B.S. and M.S. degrees in Computer Science with a
focus on intelligent and adaptive systems and worked for 11
years at IBM before joining INL

Presentation Overview
Al in Robotics and Applying Natural Connections
« Al in Robotics has some unique characteristics. It

involves an intelligent system that interacts with the real
world and these issues can influence both how a
system learns and what we expect from the systems. A
key goal is creating a system that allows us to use
robotics as a natural partner.



|daho National
Laboratory

Machine Learning & Artificial Intelligence
Symposium
April 17, 2020

Victor Walker
Advanced Transportation

Al in Robotics and Applying Natural
Connections




Robotics and Intelligence (Introduc " -
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Robotics
(What is it?)
Computation
Mobility

Humanoid Robots

Unmanned Aerial Vehicles (UAV)
Unmanned Ground Vehicles (UGV)
Self-Driving Cars

Robotic Arms




Robotics and Intelligence (Introduction) = N E G

Idaho National Laboratory

NOT AS MUCH AS 1 BELIEVE

WIZ, DO YOU BELIEVE IN
IN NATURAL STUPIDITY.

|nte||igence ARTIFICIAL INTELLIGENCE?
(What is it in Robotics?)
Behavior-based
Does it “Act” intelligently?
Does it do intelligent tasks?
Does it partner well?

£10 MacHelly - Piet. By King Festeres=TrestepaTatilancon

Needs:
Sensors
Tasks
Training
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Robotics (Relevance) SN\ (4 i

Intelligent Robotics enables a brave new world....

Robotics enables a broad range of tasks
Dangerous
Precision
Repeatable
Dull
Efficient
Remote

Intelligence enhances Partnership
Partner with humans on tasks.
Change the world... based on location
Understand environment / Aid decisions

Look for Natural Connections



Creating Intelligent Robotics ' -
By N \ “ MIduho Nafional Luborarary'

Key Barrier: TRUST Isaac Asimov’s Three Laws of
Robotics (1940)

First Law: A robot may not injure a human or
through inaction, allow a human to come to harm.

Exp|ai nable A| iS often Critical Second Law: A robot must obey the orders given it
by human beings, unless such orders would conflict
Robotics Often Rules-based with the firstlave
. . Third Law: A robot must protect its own existence,
Enable Wlth Tral nlng as long as such protection does not conflict with the
first or second law.

Ability to predict behavior

Reinforcement learning
Understanding enables acceptance
Support Co-Robotics "

CSE 415 — (¢) S Tanimoto, 2002

Often simple rules for complex tasks

Increasing
Robotic
Autonomy

INL is a champion of Adaptive Intelligence

Increasing
Operator
Control




Creating Intelligent Robotics

Need ongoing research to improve robotics

Move from tool to partner

Look for Natural Connections for Human Interaction
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YOU KNOW THIS METAL
RECTANGLE FULL OF

I SPEND MOST OF MY LFE
PRESSING BUTTONS TO MAKE
THE PATTERN OF LIGHTS

CHANGE HOWEVER T WANT.

k SOUNDS

BUT TODAY, THE PATTERN
OF LIGHTS 1S5 ALL LAFONG!

J OH GOD! TRY
PRESSING MORE

ITENOT — BUTIONS!

HELPING! (

O GfDD.

A

Task-Level Execution AN

Focus on shared Goals / Best ability
Look for Natural Seams / Shared Cognition

Research into more Natural Intelligence and Interaction
Research in Narrative-Based Intelligence
Narratives part of Intelligence
Conclusions and Framework modelling Concosonary

World Framework

Conflicting

New Marrative
Marrative

= Comfort/ Association [ Trust
Reinforce —— it e Bt
Conclusienary - ek

Add Narrative Create New Storein h
Conclusionary “Nat right” Change Conclusionaries
Add Narrative - OUEISt‘in ;’amis |
| i . Fit in Related Frame or Modify £¥p e e e S J
A ~ Therefore => . i ions
‘ Narratives \ <=B£(auﬂ= 4 Conclusions ‘ NewConclusmnleonnectmnsig
N ) A A / b

‘V Conclusions | b=h Bt ‘
; ercfore => :
; <=BJ;:5!J§E” ~ | Narratives
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Some of INL Robotics: e

Robotics Intelligence Kernel (RIK) Yucea Mountain
i Remote handling
Counter-Mine

Welding

DOD Support

Fukushima Recovery
Tunnel Mapping Sprt
UAV work ML

Current/Future Research:

Hot Cell Intelligence Development
Mobile Hot Cell Improved partnering _ |
UAV work Enabling New Abilities 0 S.’-P

Autonomous Vehicle Impacts
Fleet Al (Caldera)

. Decision
_Na_rrg_t_lve = System

Natural

Re?:?::ship Conclusion / Narrative

Learning Prediction / Interface
5 Control
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Topic Introduction

Automation as Al, or Al and Automation, or Al as Automation
Discuss how Al can be used in automation
Discuss how some existing automation, is in a sense, Al
Discuss how we can enhance automation with Al, including machine learning
Discuss the strengths and weaknesses of Al in the context of automation

Why it is relevant to ML/Al Future
There is great opportunity in using Al in automation

There is also great peril if we implement it poorly, especially if we don’t fully understand the
limitations and constraints
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Types of Al

- Expert Systems
— Draws from human expertise to automate a task
— Typically replicates how a human would do a task
— Can help us automate tasks that humans currently do

* Machine Learning
— Perceptual Classification

* Neither approach does what humans do well, which is to develop abstract representations that we can
use to generalize
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Expert Systems

Draws on expertise from multiple human experts
More consistent than humans performing the same task

Can be more accurate than humans, especially when
human experts can supervise and update expert system
with new information

Brittle and doesn't adapt well to unforeseen situations
Lacks insight and ability to generalize

Many modern control systems could be classified as Al
Draw from experts in engineering and operations
and from previous experience

Typically understandable to humans
Depends on how systems present info




Machine Learning

Works extremely well for well-defined
classification problems
Needs lots of data

In contrast, humans can learn to classify
with 1 example (and abstract reasoning)

Babies learn with just a few examples

Results depend on quality of data
Data is not inherently objective

Data is a human construct, we define
what is collected, and what it means

Assumptions are embedded in the data

It does exactly what we tell it to do....which can
be a problem

Typically opaque to humans

\E!b Idaho National Laboratory

L

=

DEEPAIHIRE® CANDIDATE

EVALUATION ALGORITHM
INFERRED INTERNAL WEIGHTINGS

WEIGHT

FACTOR

00076
0.0520
0.0208
00105
783.5627

EDUCATIONAL BACKGROUND
PAST EXPERIENCE
RECOMMENDATIONS
INTERVIEW PERFORMANCE

ENTHUSIASHM FOR DEVELOPING
AND EXPANDING THE USE OF

THE DEEPAIHIRE ALGORITHM

AN ANALYSIS OF OUR NEW
Al HRING ALGORITHIM HAS
RAISED SOME CONCERNS.

\
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Current work and future work

+ Developing expert systems to automate nuclear Wwer plant
operations (Light Water Reactor Sustainability (L

— Drawing on documentation of how humans solve
problems

+ Using ML and image processing for gesture recognition in

Procedures

SMEs - I'WRS
— Operators and engineers _—

Alarms and event logs

Other data sources

Data structure challenges

Can we use ML to classify valid versus
nuisance alarms

Can we use ML to parse procedure text?

Declsm-support and Advanced Procedure Tool

Data Intege Me Mor\to|

AR appllcatlon for NPP field workers (Technology
Commercialization Fund (TCF) Proposal with Aguiar,
Yoon,& Oxstrand)

+ If we are building a system from scratch, what data should
we collect and how should we structure it for maximum
usefulness in some of these applications (NuScale and

JUMP)
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Clean. Reliable. Nuclear.
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Vivek Agarwal

Group: Controls and Data Science Department within the
Nuclear Safety and Regulatory Research Division

Education: B.E. degree in electrical engineering from the
University of Madras, India, M.S. in electrical engineering from
The University of Tennessee, Knoxville, and Ph.D. in nuclear
engineering from Purdue University.

Presentation Overview

Transition from Preventive to Predictive Maintenance Strategy
« The presentation will present challenges current light water
reactors are facing. How the research performed by INL in
collaboration with nuclear plant owners, is providing a
science-based approach to enable plant’s transition from
traditional labor-intensive, time- consuming preventive
maintenance practice to predictive maintenance strategy.
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Diversity of Data

«  To support operation and maintenance of a nuclear power plant
— Data are collected at different spatial and temporal resolutions using different measurement techniques
— Collected data are in different format and are stored in different systems.

« Majority of the data (if not all) are collected manually.

Active SSCs Passive SSCs
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Transition to Preventive to Predictive Maintenance Strategy

Labor-centric " Risk-informed
Preventive Predictive
Maintenance y \ Maintenance

e ™ Electronic/
w| |‘;'l Robotic
" ¥V " Devices

Condition-
based
Analytics

— $ — Low Cost

$ $ $ $ High Cost

Artificial Infemge

U.S. DEPARTMENT OF

Nuclear Energy

\

V. Agarwal et al., “Deployable Predictive Maintenance Strategy based on Models Developed to Monitor Circulating Water System at the Salem Nuclear Power Plant,” INL/LTD-
19-55637, September 2019.
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Transition from Preventive to Predictive Maintenance S
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Prognosis
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Machine Modeling A y
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. s

Data Qualit S a4 —_—
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Data ' B s Predictive
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Signature — eamning’y
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Path Forward

Scalability Analysis Multiband Heterogeneous Network!

pata Generat,-c,,7

WLAN 700-950MHz DAS Antenna/Remote Unit

Router —_—,— e = — — — i — — g
=

¢ |
Video Surveillance ISM 1 .
2.4GHz/5GHz so0-so0oMHz (RFID)  + |

I R
@ ) I

Risk-Informed | L Tablets/ Cellular Power Plant ISM-Radio

; 1 |

Predictive

Devices 700MHz Communication

Maintenance Wil ,.;;;;é;;;;;;i,;;;;f;;;"‘r-‘;.;;;.""""i B )] Lercawa l FE S (G
Scalability Jumeen VAN | D - | & A
Framework - i : |
k ‘ | BLE 2.4GHz ISM 900MHz I
e [E R e e A e w._- : LoRaWAN ) I
o Ll
P P LoRaWAN RFID == B aaas ___ ___ %___ __ ..... J
Networlsﬂeﬁ::plicaﬁcn Gateway Transceiver RFID Server )
Scalability of developed approach across Multiband Heterogeneous Network
- Same plant asset across the fleet and * low power to high power, low-frequency to high-frequency,
- Different plant assets at the same plant site and short-range to long-range communication regimes

'Koushik, M., and V. Agarwal, “A Multi-Band Heterogeneous Wireless Network Architecture for Industrial Automation: A Techno-Economic Analysis,” INL/EXT-19-55830,
September 2019.
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Ahmad Al Rashdan

Group: Instrumentation. Controls and Data Science Factors
and Reliability

Education: Ph.D. in nuclear engineering from Texas A&M
University, a M.Sc. in information technology and automation
systems from Esslingen University of Applied Science in
Germany, and a B.Sc. in mechanical engineering from Jordan
University of Science and Technology.

Presentation Overview
Machine Learning & Artificial Intelligence Symposium
» Applications of Machine Learning in Automating Current
Nuclear Operations and Work Processes
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Motivation

L3 LWRS

/‘%{.{ LIGHT WATER REACTOR

SUSTAINABILITY



Machine Learning in a Nuclear Power Plant
Automate human activities (of visual, physical, analytical nature):

Idaho National Laboratory

— Visual Physical Analytical

How? perform work autonomously, faster, Why? Cost savings
more frequently, more accurately, or _ while sustaining safe
perform tasks that a human can'’t perform. and secure operations
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Types of Applications

Collection
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Idaho National Laboratory
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How does this advance ML/AI as a science?

H H 13 H ”»
Applied perspective on methods performance The balance between data and “physics” models
20 FCU A
14 e e @ ae -8 . S - 47 . 4:7:;La::'::vedl(lmnLIsmgMEasumdInMTEmpmamrE
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Cameron Krome

Group: High performance computing

Education: Bachelor’s degree in computer science with a
minor in math from Idaho State University in 2018 and is
starting a master’s degree in data science

Presentation Overview
Building a Scientific Language Model
* General language models like BERT and roBERTa have

been extremely successful when applied to a wide range
of natural language processing tasks. These models
were trained using everyday language taken from blog
posts, Wikipedia, etc. A language model trained instead
on scientific publications from arXiv.org may perform
better on tasks involving scientific research.
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A vast amount of data is freeform text
Natural language processing (NLP) is a heavily focused area in ML/Al research

The state-of-the-art methods for working with text involve general language models
ELMo

ULMFIT
BERT
roBERTa

Existing models are built using everyday language sources
Blog posts
Movie reviews
Wikipedia

Hypothesis:

If we generate a language model using scientific research papers, it may perform better
for tasks involving scientific data



Why it is relevant to ML/AI Future
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Text data is generated all the time during research
Logbooks
Freeform text fields in databases
Application log files
Software
Etc.
The number of tasks that require working with this generated text are numerous and
growing
Problem: NLP methods change quickly
Modifying state-of-the-art models to fit our needs can enable the lab to keep up

Problem: The latest models are computationally expensive
HPC resources are available for us to use if we take the time to learn how
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Retrieved scientific publications from arXiv.org — approximately 1.6 million documents

Extracted the text from the documents
Getting text from PDF files can be challenging
OCR had to be performed on many documents

Trained roBERTa from scratch using Fairseq (PyTorch) on Sawtooth GPU nodes
Scaling is not perfect (but better than expected)
Final model runtime on 25 nodes: ~3 weeks

Lessons learned

Don’t worry about some bad text Scaling Performance

Mixed precision is essential Actual = Optimal

Running on multiple nodes is challenging 200000

Checkpoint often 2,500.00 87.47%

2,000.00

Check the status of the job regularly 06515
1,500.00 -

1,000.00

Sentences/Second

500.00 91.04%
100.00% 97.34%

0.00
1 2 4 16 25

# Nodes
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Test the model against current benchmarks
GLUE
SQuUAD 2.0
ColLa

Apply the model to INL tasks and compare against general language models
Document classification
Logbook analysis
Inventory optimization
Condition report screening

Create other task-specific language models
Nuclear engineering models — non-proliferation, nuclear compliance verification
Models trained on non-word text (e.g. software, formulas, etc.)

Explore other cutting-edge models/techniques

Compare the performance and scalability of other libraries
Horovod

Tensorflow
PyTorch
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Matthew Anderson

Group: High Performance Computing C520

Education: PhD 2004, Physics, The University of Texas at
Austin

Work focused in: Reinforcement learning and deep learning

Presentation Overview
Applying Machine Learning to Code Analysis
« This talk gives a brief overview of how to apply machine

learning and natural language processing to code
analysis; the context of the discussion is malware
analysis although the application space is much
broader than just the reverse engineering of binaries.
We approach the task from the perspective of machine
translation with significant contributions from high
performance computing and emerging hardware
solutions.
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The Challenge

Malware and ransomware are becoming increasingly specialized and targeted. High performance
computing (HPC) systems are starting to be targeted.

The challenge: rapidly identify novel malware and reduce vulnerabilities.

Examples:

2003 -- 2005: “Stakkato” attack against
DOE, National Center for Atmospheric
Research, and National Science
Foundation (NSF) HPC sites

2014: Two NSF HPC sites were
compromised by a US researcher.
2014—2017: “Cloud Hopper” attacks
access the internal networks at Hewlett
Packard Enterprise (HPE) and IBM and
accessed customer systems.

2018: Nuclear scientists using the HPC
system at the Federal Nuclear Center
in Sarov Russia arrested for bitcoin
mining.

591

360

2286

684
321

Total Number Of Vulnerabilities Of Top 50 Products By Vendor

3131

369

273

] N [T
2019

e
\E]"‘b Idaho National Laboratory

[ | Google 591

M Debian 360
Microsoft 2286
Adobe 684
Cpanel 321

M canonical 190

[ | Fedoraproject 184
Linux 170
Apple 273

Opensuse 146

M Qualcomm 3131

M Foxitsoftware 133
Redhat 369
Gitlab 119
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The Naturalness Hypothesis

“Software is a form of human communication; software corpora have similar statistical properties to
natural language corpora; and these properties can be exploited to build better software engineering
tools.”

-- M. Allamanis, E. Barr, P. Devanbu, and C. Sutton (2017)
arxiv.org/pdf/1709.06182.pdf

The outcome: Apply Natural Language Processing (NLP) and Machine Learning techniques to software!

Some Examples: : : .
Source code analysis Binary analysis

Reference Predicting Program Synthesizing Identifying function Addressing Code Recovering
Bugs patches and code signatures Obfuscation compiler used to

changes generate binary

Dam (2018) v
Chakraborty (2018) v v
Ding (2019) v v

Massarelli (2019)

\
<\
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Challenges in Binary Analysis

1. Function names and debug symbols are stripped out from the binary

Source code «  Variable misuse detection
find_files(&files,media); * Learning source code changes
/* start encryption */ + Defect prediction '
encrypt_files(files,&encrypted,&not_encrypted); *  Cross-language learning |
create_files_desktop(encrypted,files,desktop); * Learﬂlng to represent programs with
graphs

2. In real-life cases, we have to undo code obfuscation
Common Code Obfuscations: « Packing
* Adding bogus logics
» Splitting basic blocks
» Substituting instructions
* Bogus control flow graphs
* Hot patching mechanisms (e.g. Conficker)

3. Assembly functions may appear different but still share the same
functional logic

Addr_1: mov eax,10
Addr_2: dec eax

Addr_3: mov [base+eax],0
Addr_4: jnz Addr_2
Addr_5: mov eax,ebx
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The Clones Ansatz:

“Just as there is uncontrolled software reuse in source code, there exists a large number of clones in the

underlying assembly code as well.”

S. Ding, B. Fund, P. Charland (2019)

Binary code fingerprints: four types of assembly code similarities

I++

i=i+1

Literally Identical Syntactically Equivalent

0x100000f9b <+27>: movl -@x8(%rbp), %ecx
0x100000f%e <+30>: addl  $@x1, %ecx
0x100000fal <+33>: movl %ecx, -0x8(%rbp)

!

0x100000fad <+36>: movl -@xc(%rbp), %ecx
0x100000fa7 <+39>: addl $0x1, %ecx
0x100000faa <+42>: movl  %ecx, -0xc(%rbp)

Slightly modified

Opportunities for Deep Learning:
-- I[dentify binary similarities

-- Assign probable function names

memcpy Same
strcpy source
memncpy ©"  with/without
mempcpy obfuscation

Semantically Similar

-- Rapid identification of novel malware
-- Identification of software vulnerabilities
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Datasets, Tools, and Approach

Datasets:

*  Vulnerability dataset: Contains 3,015 assembly functions compiled with various compilers; contains
variants of Heartbleed, Shellshock, Venom, Clobberin’ Time, etc.

« UbuntuDataset: 87,853 ELF files disassembled using IDA Pro with >10 million distinct named functions
* NERO: 13,826 named functions from GNU repository with control flow graphs
* Research Malware/Ransomware: GonnaCry, Mirai

Tools:

NMr OpenNMT

DeepGraphlLibrary asm2vec angr

An open source neural machine translation system.

Approach:

« Approach binary analysis (binary similarity, function naming) using Neural Machine Translation:
— Bidirectional recurrent neural network with Long Short-Term-Memory cells
— Incorporate the Transformer Architecture

«  Augment existing datasets with Github projects (>28 million public repositories) and more malware

+ Create new metrics for scoring semantic similarity in binaries akin to what is used in NLP (e.g. BERTScore
T. Zhang et al. 2020).
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