
This symposium involves audio/video recording of all presentations, discussions, 
and comments. The recording for this symposium will be made available to the 
public. By receiving this notification, your participation consents to recording your 
interactions with the symposium and public release.

Your audio and video is muted by default

Use the “Chat” feature to ask questions. All questions will be 
addressed at the end of each presentation (time permitting)

Use the “Chat” feature to let us know if 
you have technical difficulties

For low-quality connections, switch off video 
and do not use VPN, if possible
A separate audio PIN will be provided when 
you sign in for the phone-in audio option
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Webinar will begin at 11:00 am MST



AI/ML Computational Infrastructure
Agenda – ML/AI Symposium 8.0

May 26, 2022 – 11:00 AM to 1:00 PM MDT
Time Presentation Subject Speaker(s)

11:00-11:05 Kickoff for the INL AI/ML 8.0 Symposium Ron Boring, INL

11:05-11:20 Quantum Computing and Machine Learning Anand Kiran Shah,   Qauntinuum

11:20-11:35 Using Field Programmable Gate arrays (FPGAs) to accelerate AI/ML Inference Pipelines Matt Anderson, INL

11:35-11:50 Fully on-chip neuromorphic backpropagation Andrew Sornborger, LANL

11:50-12:05 An overview of the GPU hardware and system Conda environments for AI/ML on HPC Matt Sgambati, INL

12:05-12:20 Management of AI/ML Programming Environments Brandon Biggs, INL

12:20-12:35 Jupyter Notebooks - Open OnDemand Bradlee Rothwell, INL

12:35-12:50 HPC Storage Shane Grover, INL

12:50-1:00 A preview on the INL AI/ML Summer 2022 Symposium (S22S) Shad Staples, INL
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MACHINE LEARNING

MODELS TRAININGDATA
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QUANTUM MACHINE LEARNING

Using quantum data with classical or 
quantum ML models for more accurate 

predictions of quantum systems 

Faces a data-loading challenge

MODELS TRAININGDATA
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QUANTUM MACHINE LEARNING

MODELS TRAININGDATA

Either polynomial speedups based on 
faster searching of unstructured 

databases OR exponential speedups for 
performing faster linear algebra

Requires fault-tolerance
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QUANTUM MACHINE LEARNING

MODELS TRAININGDATA

Quantum ML models based on 
parameterized quantum circuits (PQCs) 

are more “expressive”

Model and sample from probability 
distributions that are classically 

intractable
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QUANTUM 101 – QUBIT STATES

Since |0> and |1> form an orthonormal basis, we can represent 
any 2D vector with a linear combination of these two states. For 
example:
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QUANTUM 101 – SINGLE QUBIT GATES
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QUANTUM 101 – MULTIPLE QUBITS & ENTANGLEMENT

CNOT Gate

Hadamard + CNOT Gate

Hadamard:

Bell State!
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VARIATIONAL ALGORITHMS AS QML MODELS
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VARIATIONAL ALGORITHMS AS QML MODELS

On QPU: 

Create a quantum state, effectively a 
probability distribution, using some 
parameterized rotation gates

Make measurement in some basis on each 
qubit which returns a bit string (0s and 1s)
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VARIATIONAL ALGORITHMS AS QML MODELS

On CPU: 

Given a bit string, calculate the energy of the 
system, i.e., the cost function

Perform optimization procedure if not at 
minimum and calculate updated parameters
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FINDING NEAR-TERM ADVANTAGE

 Generating a complex 
probability distribution and 
sampling from it is 
classically hard quantum 
advantage

 Useful for unsupervised ML, 
generative models, Bayesian 
inference, anomaly 
detection, etc.
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GENERATIVE MODELING AND ANOMALY DETECTION

https://arxiv.org/pdf/2010.10492.pdf

https://doi.org/10.1038/s41534-019-0157-8

 More effectively learn 
probability 
distributions to 
generate accurate 
synthetic data

 Recognize patterns 
and detect anomalies 
effectively leveraging 
qGANs

https://arxiv.org/pdf/2010.10492.pdf
https://doi.org/10.1038/s41534-019-0157-8
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PROBABILISTIC REASONING

 Inference is classically hard, 
even approximate inference 
is NP-hard, especially with 
discrete variables  quantum 
advantage

 In March 2021, we published a 
seminal paper describing two 
novel quantum algorithms for 
performing variational 
inference on quantum 
computers Financial decision system

Hidden: e.g. market regime

Observed: stock market returns

https://arxiv.org/pdf/2103.06720.pdf

Two novel quantum algorithms 
enabling near-term quantum 
computers to reason under 
uncertainty

https://arxiv.org/pdf/2103.06720.pdf


© 2022 by Quantinuum. All rights reserved. 19

EXAMPLE APPLICATIONS

Two key concepts for finding 
advantage:

 Leverage probabilistic nature of 
quantum computers

 Focus on highly-correlated and 
complex datasets 
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Using Field Programmable Gate Arrays (FPGAs) to 
accelerate AI/ML Inference Pipelines

Matthew Anderson
26 May 2022

Special Purpose Devices for Inference

C520 | High Performance Computing 
Matthew.anderson2@inl.gov

AI/ML 8.0 INL/MIS-22-67261



When would you need an FPGA for ML inference?
Special Purpose Devices for Inference

C520 | High Performance Computing 
Matthew.anderson2@inl.gov

Running ML in a radiation environment

Operating in a power-constrained environment

Running ML at the edge

Running ML where data requirements need 
inference 10x faster than GPU

Running ML where functional 
safety certifications are needed



Performance Metrics on Inference Hardware Available at INL HPC
Special Purpose Devices for Inference

C520 | High Performance Computing 
Matthew.anderson2@inl.gov

Model NVIDIA V100 NVIDIA A100 ZCU104 VCK190

3 Resnet block 12k FPS 14k FPS 8k FPS 21k FPS

4 layer CNN 14k FPS 18k FPS 8k FPS 21k FPS

Autoencoder 14k FPS 21k FPS 8k FPS 24k FPS



Model to FPGA implementation:
Special Purpose Devices for Inference

C520 | High Performance Computing 
Matthew.anderson2@inl.gov

Supported frameworks:

PyTorch
Tensorflow 1, 2
Neptune
Caffe

Accuracy loss in moving to FPGA: ~2%

Petalinux images ready for stand-alone deployment

Power requirement: ~6 Watts

Train on GPU
Save the model

Quantize the model 
for int16

Prune against 
subset of training 

data;
Re-evaluate 

accuracy

Compile for the 
FPGA model and 

deploy

C++ Python



Questions?
Special Purpose Devices for Inference

C520 | High Performance Computing 
Matthew.anderson2@inl.gov
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Fully On-Chip Neuromorphic 
Backpropagation

Alpha Renner, Forrest Sheldon, Anatoly 
Zlotnik, Louis Tao, Andrew Sornborger

INRC Seminar, June 16, 2021

LA-UR-22-24625

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.lanl.gov%2Fprojects%2Fldrd-tri-lab%2Flogo-usage.php&psig=AOvVaw3GBw4V53AxGbNK-H1nKO8h&ust=1581376300934000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCPjSkvrLxecCFQAAAAAdAAAAABAD
https://www.google.com/imgres?imgurl=https%3A%2F%2Fwww.caddell.com%2Fwp-content%2Fuploads%2F2018%2F04%2FNNSA.jpg&imgrefurl=https%3A%2F%2Fwww.caddell.com%2Fcaddell-to-construct-the-new-state-of-the-art-nnsa-headquarters%2F&tbnid=XBcESf0lIzSHTM&vet=12ahUKEwih7MfrnKnvAhUKOawKHczHAccQMygDegUIARCtAQ..i&docid=jELsDvyA-U9kgM&w=1000&h=485&q=nnsa%20logo&client=firefox-b-1-e&ved=2ahUKEwih7MfrnKnvAhUKOawKHczHAccQMygDegUIARCtAQ
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Superhuman performance at Go
Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A.
Rusu, Joel Veness, Marc G. Bellemare, Alex Graves et al. "Human-
level control through deep reinforcement learning." Nature 518,
no. 7540 (2015): 529-533.

Superhuman performance at Atari
Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez,
Laurent Sifre, George Van Den Driessche, Julian Schrittwieser
et al. "Mastering the game of Go with deep neural networks
and tree search." Nature 529, no. 7587 (2016): 484.

Vinyals, Oriol, Igor Babuschkin, Wojciech M. Czarnecki, Michaël 
Mathieu, Andrew Dudzik, Junyoung Chung, David H. Choi et al. 
"Grandmaster level in StarCraft II using multi-agent 
reinforcement learning." Nature 575, no. 7782 (2019): 350-354.

Grandmaster performance at Star Craft II

Backprop is used as a function
approximator for reinforcement
learning

Background – Backpropagation Algorithm
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Results Preview: MNIST

Validation – 96%

14 Loihi timesteps per training 
sample 

Inference after 3 timesteps

676 FPS, 1.48 ms/sample
0.592 mJ/sample

Energy-delay product = 0.9μJs
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Toolkit of Neuronal and Circuit Mechanisms for Spiking 
Backprop

Sornborger, Andrew, Louis Tao, Jordan Snyder, and Anatoly Zlotnik. "A Pulse-gated,
Neural Implementation of the Backpropagation Algorithm." In Proceedings of the
7th Annual Neuro-inspired Computational Elements Workshop, pp. 1-9. 2019.

Neuronal and network mechanisms for implementing backprop:

Synfire-gated synfire chain(s)
Short-term memories
Push-me pull-you pairs for encoding real numbers and probabilities
Gating of thresholded activity
Gating of derivative of activity via SGSC
Implementation of Hadamard product via pulse-gating
Simultaneous gating of graded information to pre- and post-synaptic neuronal 

populations for Hebbian synaptic update (turning learning on and off via pulse-gated 
control)

Alpha Renner, Forrest Sheldon, Louis Tao, Anatoly Zlotnik, Andrew Sornborger. "A
Pulse-gated, Spiking Neural Implementation of the Backpropagation Algorithm."
Proceedings of the 78h Annual Neuro-inspired Computational Elements Workshop,
pp. 1-9. 2020.

Renner, Alpha, Forrest Sheldon, Anatoly Zlotnik, Louis Tao, and Andrew Sornborger. 
"The backpropagation algorithm implemented on spiking neuromorphic hardware." 
arXiv preprint arXiv:2106.07030 (2021).
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Synfire Gated Synfire Chains – Implementing Communication 
Through Coherence

Synfire-chain neuron (blue with
X) inactive and hence fails to
potentiate information flow

Synfire-chain neuron (blue)
active and hence potentiates
information flow

Sornborger, Andrew T., Zhuo Wang, and 
Louis Tao. "A mechanism for graded, 
dynamically routable current propagation in 
pulse-gated synfire chains and implications 
for information coding." Journal of 
computational neuroscience 39, no. 2 
(2015): 181-195.

Wang, Zhuo, Andrew T. Sornborger, and 
Louis Tao. "Graded, dynamically routable 
information processing with synfire-gated 
synfire chains." PLoS computational biology
12, no. 6 (2016): e1004979.
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Issues in Implementing On-Chip Spiking Backprop
Weight transport problem:  For correct credit assignment, feedback weights must be 
the same as feedforward weights.

Backwards computation problem:  Forward and error backpropagation passes 
implement different computations.

Differentiability problem: Spikes are non-differentiable.

Hardware constraints problem: Constraints on plasticity mechanisms. On some 
hardware, no plasticity is offered at all; in some cases only specific STDP rules are 
allowed; and, in almost all cases, it is necessary that information is local, i.e. 
information is only shared between neurons that are synaptically connected. This is 
also important for scalability. Furthermore, sufficient weight precision is needed for 
training. 

Renner, Alpha, Forrest Sheldon, Anatoly Zlotnik, Louis Tao, and Andrew Sornborger. 
"The backpropagation algorithm implemented on spiking neuromorphic hardware." 
arXiv preprint arXiv:2106.07030 (2021).
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Our Circuit Structure

Input

Output

Local gradient  
evaluation

Loihi translation

Alpha Renner, Forrest Sheldon, Anatoly Zlotnik, Louis Tao, Andrew Sornborger.
”The Backpropagation Algorithm Implemented on Spiking Neuromorphic
Hardware." arXiv:2106.07030 [cs.NE].
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Our Circuit Structure

Input

Output

Local gradient  
evaluation

Loihi translation
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Our Circuit Structure

Input

Output

Local gradient  
evaluation

Loihi translation
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Our Circuit Structure

Input

Output

Local gradient  
evaluation

Loihi translation
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Our Circuit Structure

Input

Output

Local gradient  
evaluation

Loihi translation
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Our Circuit Structure

Input

Output

Local gradient  
evaluation

Loihi translation
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Our Circuit Structure

Input

Output

Local gradient  
evaluation

Loihi translation
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Alpha Renner, Forrest Sheldon,
Anatoly Zlotnik, Louis Tao, Andrew
Sornborger. ”The Backpropagation
Algorithm Implemented on Spiking
Neuromorphic Hardware."
arXiv:2106.07030 [cs.NE].
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error (target but no output
spike) leads to potentiation
of the W2 synaptic weight
and the positive transpose

The same error leads
to depression of the
negative transpose
via activity of d1

no error because o and t
fire at the same location,
i.e. there is no update in
this iteration

there is an error (t fires at index 4, but o at
index 7), but the local gradient is 0
because it is gated ‘off’ at index 7 because
the derivative of the activation function is
0, i.e. both o< and o> fire. Also, it is not
gated ‘on’ at index 4, because o< does not
fire

Alpha Renner, Forrest Sheldon, Anatoly Zlotnik, Louis Tao, Andrew Sornborger. ”The Backpropagation Algorithm
Implemented on Spiking Neuromorphic Hardware." arXiv:2106.07030 [cs.NE].
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Results Preview: MNIST

Validation – 96%

14 Loihi timesteps per training 
sample 

Inference after 3 timesteps

676 FPS, 1.48 ms/sample
0.592 mJ/sample

Energy-delay product = 0.9μJs

Roughly 2 orders-of-magnitude 
less power used relative to GPU
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Summary
• We have implemented the first backpropagation algorithm that is

fully on-chip with no computer in the loop or help from the on-chip
x86 microprocessors.

• Compared to an equivalent implementation on a GPU, there is no
loss in accuracy, but there are about two orders of magnitude
power savings in the case of small batch sizes which are more
realistic for edge computing settings.

• The network model we propose offers significant opportunities as a
building block that can, e.g. be integrated into larger SNN
architectures that could profit from a trainable on-chip machine
learning module.
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Questions?



An overview of the GPU hardware 
and System Conda Environments 
for AI/ML on HPC

May 9, 2022

Matthew Sgambati
HPC System Administrator



Overview

• Sawtooth
− 108 NVIDIA V100 SMX2s
− 100Gb/s NVIDIA Mellanox EDR InfiniBand

• Hoodoo
− 44 NVIDIA A100 SMX4s
− 200Gb/s NVIDIA Mellanox HDR InfiniBand



Sawtooth

• V100 SXM2



Hoodoo

• A100 SXM4



Sawtooth

• Connection structure
− NVLink – 300GB/sec
− IB EDR –100Gb/sec



Hoodoo

• Connection structure
− NVLink – 600GB/sec
− IB HDR –200Gb/sec



System Conda Environments
Sawtooth
• OpenAI Gym
• Python 3
• Python 3.7 Boltz TraP2
• Python 3.7 Pytorch 1.4
• Python 3.7 Rapids 0.13
• Python 3.7 Tensorflow 1.15
• Python 3.7 Tensorflow 2.1 GPU
• Python 3.7 Tensorflow 2.1 Horovod
• Python 3.7 Tensorflow 2.4 gpu
• Python 3.8 Rapids 22.04

• R 3.6.1
• Tensorflow 2.5
• pymatgen
• Pytorch-1.8.1



System Conda Environments
Hoodoo
• Python 3
• Fastai PyTorch CUDA 11.2
• PyTorch 1.11.0 Horovod Cuda 11.4
• Pytorch 1.7.1 Horovod Cuda 11.1
• pytorch 1.8.1
• Tensorflow 2.4 Horovod Cuda 11.1
• Tensorflow 2.4 Horovod Cuda 11.2
• tensorflow-2.8



Questions?



Battelle Energy Alliance manages INL for the U.S. Department of Energy’s Office of Nuclear Energy. 
INL is the nation’s center for nuclear energy research and development, and also performs research 

in each of DOE’s strategic goal areas: energy, national security, science and the environment.



Management of AI/ML Programming 
Environments

May 2, 2022

Brandon Biggs
INL/MIS-22-67115



ML/AI Programming 
Scenarios

Managing virtual 
environments with 

Conda

Conda vs other tools How INL HPC uses 
Conda

Roadmap



Scenario - You want to run a model requiring 
Tensorflow 2.8 and Horovod
• What kind of compute resources do you need?
• If you wanted to set this up locally, you’d have to manage the software stack 

yourself (Conda, CUDA, RAPIDS, Docker, MPI, etc)
• On INL HPC you can load a module or start a container
• Can also use some existing infrastructure to create your own environment

$ module load conda
$ conda create -n “tensorflow_2.8_horovod” --python=3.8
$ conda activate tensorflow_2.8_horovod



Scenario - INL HPC is missing a package or 
framework that I need...
• If you’re looking for a framework or package that we don’t already have let us 

know by creating a support ticket by emailing hpcsupport@inl.gov
• You can also use the environments that we setup and add your own packages:

$ module load conda
$ conda activate “tensorflow_2.8”
$ pip install --user PACKAGE



Managing Virtual Environments with Conda

• Package Management
− Software packages
− Dependencies (more than just other 

Python packages!)
• Manages environments

− Different versions of software
− Different environment requirements

• R vs Python Ruby vs Lua vs ...
• TensorFlow vs Pytorch vs FastAI vs 

RAPIDS vs ....



Conda vs Other Tools

• Conda vs pip
− We use both together
− Conda has been great for dependency resolution 

on older operating systems like CentOS7
− Use Conda to create environment and download some packages, pip for 

others
− Some frameworks are dropping support for pip

• RAPIDS dropped support for pip in 2019[1]

• Conda vs Containers
− We’re in the early stages of using containers for reproducibility
− Conda isn’t great at being reproducible or portable. Basically, start from 

scratch
− Users don’t need root to build a Conda environment

[1] https://medium.com/rapids-ai/rapids-0-7-release-drops-pip-packages-47fc966e9472



How INL HPC uses Conda

• 33 General environments
− 11 variants/versions of TensorFlow
− 6 variants/versions of PyTorch
− 2 versions of RAPIDS

• Setup as Jupyter Notebook kernels allowing 
people to change environments with one click

• Allow users to create their own Python 
environments in their home directory or in a 
project directory



Jupyter Notebooks – Open 
OnDemand 
Bradlee Rothwell 
High Performance Computing 
Idaho National Laboratory 

May 26, 2022



Step 1: Log onto HPC OnDemand



Step 2: Selecting a Jupyter Notebook



Step 3: Launching a Jupyter job 

• Project Name
• Cluster – Sawtooth
• CPUs/GPUs Requested
• Number of Hours



Step 3: Launching a Jupyter job 



Step 4: Select a Jupyter project

Select a project from home directory
OR

Create a new project



Running Jupyter Cells







Comments 



Kernels



Step 5: Saving a Jupyter Project
• Will auto save
• Can also clear cells



Questions?
• hpcsupport@inl.gov 



Idaho National Laboratory
HPC Storage
https://hpcweb.hpc.inl.gov/home/storage

May 26, 2022

Shane Grover
HPC Storage Administrator



Home Directories

• DELL/EMC Isilon storage system
• 2.11 PB of storage
• 12 x 40 GbE connections
• Disk Quota Limits for Home Directories
• Backed up for disaster recovery
• Uses snapshots for quick file recovery
• Slowest storage



Scratch

• IBM ESS
• Uses Spectrum Scale/gpfs on Sawtooth

− Lemhi uses NFS
• 1 PB of storage
• No Disk Quotas
• Files are deleted after 90 days
• Not backed up
• No snapshots
• Fast storage – IO heavy
• Will be updating the system 2022 – More through-put and 2 PB of storage



Ram Disk and local SSD

• Sawtooth
− /dev/shm – 94 GB

• Lemhi
− /tmp SSDs – 155 GB
− /dev/shm – 94 GB

• Hoodoo
− /local_storage – 1.8 TB
− /dev/shm – 252 GB

• Space will be limited
• Volatile – The data will be lost if the node goes down



Battelle Energy Alliance manages INL for the U.S. Department of Energy’s Office of Nuclear Energy. 
INL is the nation’s center for nuclear energy research and development, and also performs research 

in each of DOE’s strategic goal areas: energy, national security, science and the environment.



INL S22S - AI/ML Competition
• INL will host an artificial intelligence and machine learning competition this summer, the Summer 2022 

Symposium (S22S). 

• Come show off your skills and submit your results. Prizes will be handed out for the top performers. 

• This symposium will consist of six one-hour sessions, which are split into half theory/instruction and half 
questions and answers. Participants may join for either or both parts of a session. 

• We will be reviewing the concepts we taught in last year’s S21S symposium and let you use those skills to 
compete for the top prize. 

• This free professional development opportunity is available to only INL staff and interns. The sessions will be 
held on Wednesdays from 1 to 2 p.m. MT from June 15 to July 27.

June 15 June 22 June 29 July 13 July 20 July 27
Quick Review of S21S, 
including how to request 
HPC access and how to use 
Jupyter Notebooks inside 
of the HPC enclave.

Review models like Random 
Forest, Regression, and 
Support Vector Machines. Go 
over the warm-up data set.

Review answers from warm-
up data set. Introduce the 
competition data set. Discuss 
rules and how we plan on 
scoring the results.

Review Neural Networks, 
including how to build a 
simple neural network on the 
competition data set. 

Question and Answer 
session.

Review results and 
announce winners.

The competition team is led by Cody Walker, Jacob Farber and Shad Staples. 
For more information or to register please contact Shad Staples.

mailto:shad.staples@inl.gov
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