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WHO WE ARE

Cambridge Quantum \ Honeywell

Quantum Solutions

Leader_ in Quantum /  Leading Quantum
Computing Software Sy /  Computing Hardware

GLOBAL PRESENCE

Germany, Japan, United Kingdom, United States, adding location in France
400 employees — 300+ Scientists and Engineers
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MACHINE LEARNING

= pay ™

DATA MODELS TRAINING
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QUANTUM MACHINE LEARNING

= pay ™

DATA MODELS TRAINING

Using quantum data with classical or
guantum ML models for more accurate
predictions of quantum systems

Faces a data-loading challenge

‘ ' Q UA N T I N U U M © 2022 by Quantinuum. All rights reserved.




QUANTUM MACHINE LEARNING

DATA

Using quantum data with classical or
guantum ML models for more accurate
predictions of quantum systems

Q QUANTINUUM

MODELS

© 2022 by Quantinuum. All rights reserved.
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TRAINING

Either polynomial speedups based on
faster searching of unstructured
databases OR exponential speedups for
performing faster linear algebra

Requires fault-tolerance




QUANTUM MACHINE LEARNING

DATA

Using quantum data with classical or
guantum ML models for more accurate
predictions of quantum systems

Q QUANTINUUM

MODELS

Quantum ML models based on
parameterized quantum circuits (PQCs)
are more “expressive”

Model and sample from probability
distributions that are classically
intractable

© 2022 by Quantinuum. All rights reserved.
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TRAINING

Either polynomial speedups based on
faster searching of unstructured
databases OR exponential speedups for
performing faster linear algebra




QUANTUM 101 — QUBIT STATES

6 6 06 06 1 6 0606 606 0 60 6 0 Since |0>and | 1> form an orthonormal basis, we can represent
any 2D vector with a linear combination of these two states. For
example:
0.
: - 1 -
0 Probability of ‘\/— .
lz) = | 1| < car being at — 2 — _1 _?'
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QUANTUM 101 — SINGLE QUBIT GATES
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QUANTUM 101 — MULTIPLE QUBITS & ENTANGLEMENT

CNOT Gate
Input (t,c) | Output (t,c)
do 00 00
01 11
1
q 0 10 0.60
11 01 0.500 0.500
0.451
Hadamard + CNOT Gate m
Hadamard: 10+) = %000) +101)) gj 0301
do S
0.151
CNOT|0+) = L-(|00 11
g1 | +> ﬁ(| >+| ))
0.00-

Bell State!
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VARIATIONAL ALGORITHMS AS QML MODELS

Quantum Classical
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VARIATIONAL ALGORITHMS AS QML MODELS

Parameterized Quantum Circuit

M,
0) = Ug(a) = Post-processing
Pre-processing A Ug
®X@m - £
Input: « ~ Pp |0> : g {<Mk>m’e}k=1
g —> ¢@) [ | —— >

On QPU:

Create a quantum state, effectively a
probability distribution, using some
parameterized rotation gates

Make measurement in some basis on each
qubit which returns a bit string (0Os and 15s)

Q QUANTINUUM
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VARIATIONAL ALGORITHMS AS QML MODELS

Parameterized Quantum Circuit

My,
0) = Ug(a) = Post-processing
Pre-processing A Ue ;
®m ; £
Input: @ ~ Pp |0> g {(Mk>m,9}k=1
x —» o(x) [T e »
o K
f ({( k)m,ﬂ}k=1)
On QPU: On CPU:
Create a quantum state, effectively a Given a bit string, calculate the energy of the
probability distribution, using some system, i.e., the cost function

parameterized rotation gates o _

Perform optimization procedure if not at
Make measurement in some basis on each minimum and calculate updated parameters
qgubit which returns a bit string (Os and 1s)

Q QUANTINUUM
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FINDING NEAR-TERM ADVANTAGE

X~Pg =2 y= 1

xd (xlg)l® 7
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or | 04 ZH — | = i Probabilistic classifier

|0) 1] i outcomes :
0) 1 Fan I |
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two -sample test
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1
] 1
classical loss & gradient :
optimizer B —— :

Q QUANTINUUM

E.g. neural net

© 2022 by Quantinuum. All rights reserved.

D(x; ¢)

Probability
y=1

= Generating a complex
probability distribution and
sampling from it is
classically hard 2 quantum
advantage

= Useful for unsupervised ML,
generative models, Bayesian
inference, anomaly
detection, etc.




GENERATIVE MODELING AND ANOMALY DETECTION

@ Initialize circuit with random parameters @ = (6, --- %) " More effeCtively Iea rn
ARTICLE  OFEN N/ — probability
. . . 0 2 .. .
A generative modeling approach for benchmarking and :0; : distributions to
training shallow quantum circuits Slu@eh) ue| ... jueh| | ueh) | g generate accurate
Marcello Benedetti'?, Delfina Earcia-PintosS, Oscar Perdomo®*®, Vicente Leyton-Ortega®*, Yunseong Nam® and 0} 5 Synth etiC data
Alejandro Perdomo-Ortiz'>*”
https://doi.org/lO.1038/541534—019-0157—8 I@Update 0. Repeat 2 through 4 until convergence T
@ Estimate mismatch between data and quantum outcomes = ReCO g n IZG patte rns
Reference data to be learned Outcome from quantum circuit .
and detect anomalies
Anomaly detection with variational quantum generative adversarial networks E:j: B EE ERE 3::: effectively leveraging
£o _— 0
Daniel Herr,” Benjamin Obert, and Matthias Rosenkranz’ Zoto Zoao CIGANS
d-fine GmbH, An der Hauptwache 7, 60318 Frankfurt, Germany 0.05 005 |
(Dated: July 22, 2021) v A AIARSA T
® Coupuame  oupurete

https://arxiv.org/pdf/2010.10492.pdf
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https://arxiv.org/pdf/2010.10492.pdf
https://doi.org/10.1038/s41534-019-0157-8

PROBABILISTIC REASONING

Variational inference with a quantum computer
= Inference is classically hard,

. - + 1, % : 1,2 . . P | . 1 . 1,1
even approxim ate inference Marcello Benedetti,” * Brian Coyle," < Mattia Fiorentini,” Michael Lubasch,” and Matthias Rosenkranz

is NP-hard’ especia"y with https://arxiv.org/pdf/2103.06720.pdf
discrete variables = quantum
advantage Updated ¢ for odds o go(2|e) /p(z)
| L
Optimize classifier Optimize Born machine .
o 20 Two novel quantum algorithms
= In March 2021, we published a _ﬁ” vary/8 | True o< p(al2) enabling near-term quantum
seminal paper describing two e comput'ers to reason under
nOVG| quantum algor'thms for Samples Odds dlstrlbutlon Uncertamty
performlng Varlational Updated 0 for Born machlne
inference on quantum . . .
Financial decision system
computers
Cf ? Cf Hidden: e.g. market regime
® ® Observed: stock market returns
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https://arxiv.org/pdf/2103.06720.pdf
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EXAMPLE APPLICATIONS

Correlation Modeling
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Testset  Corrupted Restored

Synthetic data generation

Data recovery — missing
time series data

Dsta augmentation

___________________________________________________________________
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Anomaly detection \
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fenerswor e ) Herr et al.,, Quantum Sci. Technol, 6, 045004 (2021) .~/
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Two key concepts for finding
advantage:

= Leverage probabilistic nature of
quantum computers

= Focus on highly-correlated and
complex datasets
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Al/ML 8.0 INL/MIS-22-67261

- Using Field Programmable Gate Arrays (FPGAs) to
accelerate AI/ML Inference Pipelines

Matthew Anderson
26 May 2022

C520 | High Performance Computing

IDAHO NATIONAL LABORATORY

Matthew.anderson2@inl.gov



- When would you need an FPGA for ML inference?
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Running ML at the edge

Running ML where functional Running ML where data requirements need
safety certifications are needed inference 10x faster than GPU

C520 | High Performance Computing




Special Purpose Devices for Inference

Performance Metrics on Inference Hardware Available at INL HPC

T e W N
3 Resnet block 12k FPS 14k FPS 8k FPS 21k FPS
4 layer CNN 14k FPS 18k FPS 8k FPS 21k FPS
Autoencoder 14k FPS 21k FPS 8k FPS 24k FPS

C520 | High Performance Computing

IDAHO NATIONAL LABORATORY

Matthew.anderson2@inl.gov



Special Purpose Devices for Inference
- Model to FPGA implementation:

Supported frameworks: Accuracy loss in moving to FPGA: ~2%

PyTorch Petalinux images ready for stand-alone deployment
Tensorflow 1, 2

Neptune Power requirement: ~6 Watts

Caffe

Quantize the model

Train on GPU P o |nt16_ Compile for the
TN EREITE! —— FPGA model and

deploy
C++ Python

Save the model subset of training
data;
Re-evaluate
accuracy

C520 | High Performance Computing
Matthew.anderson2@inl.gov




Special Purpose Devices for Inference

Questions?

C520 | High Performance Computing

IDAHO NATIONAL LABORATORY

Matthew.anderson2@inl.gov
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Fully On-Chip Neuromorphic
Backpropagation T~

\ - LABORATORY DIRECTED
L@RD RESEARCH & DEVELOPMENT

Alpha Renner, Forrest Sheldon, Anatoly

&‘mmp% U.S. DEPARTMENT OF OffICe Of NA‘ g":é‘%
Zlotnik, Louis Tao, Andrew Sornborger

,;:\
e N ,;}-g E N E RGY S CI ence National Nuclear Security Administration

INRC Seminar, June 16, 2021

University of

Zurich™ ETH

Eidgendssische Technische Hochschule Ziirich
LA-UR-22-24625

Swiss Federal Institute of Technology Zurich

7o)
M}"‘%‘%\ Managed by Triad National Security, LLC, for the U.S. Department of Energy’s NNSA. 8/15/2022
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Background — Backpropagation Algorithm
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Superhuman performance at Atari

Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A.
Rusu, Joel Veness, Marc G. Bellemare, Alex Graves et al. "Human-
level control through deep reinforcement learning." Nature 518,
no. 7540 (2015): 529-533.

. . {0:- Googlgh?“eephaini
Backprop is used as a function st
approximator for reinforcement
learning 1

00:34:31)

-
© Google

Superhuman performance at Go

Silver, David, Aja Huang, Chris J. Maddison, Arthur Guez,

Laurent Sifre, George Van Den Driessche, Julian Schrittwieser

et al. "Mastering the game of Go with deep neural networks
~ and tree search." Nature 529, no. 7587 (2016): 484.
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Grandmaster performance at Star Craft Il

Vinyals, Oriol, Igor Babuschkin, Wojciech M. Czarnecki, Michaél
Mathieu, Andrew Dudzik, Junyoung Chung, David H. Choi et al.
"Grandmaster level in StarCraft 1l using multi-agent
reinforcement learning." Nature 575, no. 7782 (2019): 350-354.

8/15/2022
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Results Preview: MNIST

Validation — 96%

14 Loihi timesteps per training
sample
Inference after 3 timesteps

676 FPS, 1.48 ms/sample
0.592 mJ/sample
Energy-delay product = 0.9us
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Energy Ratio (vs Lolhi)
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Toolkit of Neuronal and Circuit Mechanisms for Spiking
Backprop

Neuronal and network mechanisms for implementing backprop:

& Synfire-gated synfire chain(s)

& Short-term memories

-* Push-me pull-you pairs for encoding real numbers and probabilities

-+ Gating of thresholded activity

& Gating of derivative of activity via SGSC

¢ Implementation of Hadamard product via pulse-gating

-+ Simultaneous gating of graded information to pre- and post-synaptic neuronal
populations for Hebbian synaptic update (turning learning on and off via pulse-gated
control)

Sornborger, Andrew, Louis Tao, Jordan Snyder, and Anatoly Zlotnik. "A Pulse-gated, Alpha Renner, Forrest Sheldon, Louis Tao, Anatoly Zlotnik, Andrew Sornborger. "A

Neural Implementation of the Backpropagation Algorithm." In Proceedings of the Pulse-gated, Spiking Neural Implementation of the Backpropagation Algorithm."

7th Annual Neuro-inspired Computational Elements Workshop, pp. 1-9. 2019. Proceedings of the 78h Annual Neuro-inspired Computational Elements Workshop,
pp. 1-9. 2020.

Renner, Alpha, Forrest Sheldon, Anatoly Zlotnik, Louis Tao, and Andrew Sornborger.
"The backpropagation algorithm implemented on spiking neuromorphic hardware."
‘5 Los Alamos arXiv preprint arXiv:2106.07030 (2021) 8/15/2022 29
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Synfire Gated Synfire Chains — Implementing Communication
Through Coherence

— AN

Sornborger, Andrew T., Zhuo Wang, and
Louis Tao. "A mechanism for graded,
dynamically routable current propagation in
pulse-gated synfire chains and implications
for information coding." Journal of
computational neuroscience 39, no. 2
(2015): 181-195.

Synfire-chain neuron (blue with Synfire-chain neuron (blue) Wang, Zhuo, Andrew T. Sornborger, and
X) inactive and hence fails to active and hence potentiates Louis Tao. “Graded, dynamically routable

] ) ) ) ) information processing with synfire-gated
potentiate information flow information flow synfire chains." PLoS computational biology

12, no. 6 (2016): €1004979.

‘@ Los Alamos 8/15/2022 30
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Issues in Implementing On-Chip Spiking Backprop

Weight transport problem: For correct credit assignment, feedback weights must be
the same as feedforward weights.

Backwards computation problem: Forward and error backpropagation passes
implement different computations.

Differentiability problem: Spikes are non-differentiable.

Hardware constraints problem: Constraints on plasticity mechanisms. On some
hardware, no plasticity is offered at all; in some cases only specific STDP rules are
allowed; and, in almost all cases, it is necessary that information is local, i.e.
information is only shared between neurons that are synaptically connected. This is
also important for scalability. Furthermore, sufficient weight precision is needed for

training.

Renner, Alpha, Forrest Sheldon, Anatoly Zlotnik, Louis Tao, and Andrew Sornborger.
"The backpropagation algorithm implemented on spiking neuromorphic hardware."
‘5 Los Alamos arXiv preprint arXiv:2106.07030 (2021) 8/15/2022 31
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Alpha Renner, Forrest Sheldon, Anatoly Zlotnik, Louis Tao, Andrew Sornborger.
"The Backpropagation Algorithm Implemented on Spiking Neuromorphic

O ur C i rcu it Stru Ctu re Hardware." arXiv:2106.07030 [cs.NE].
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Backpropagation Algorithm

Update for a single neuron:
Awgj =0, - a7 - ' (2")

o]

“error”  Input Derivative of activation
function



The learning mechanism in detail

gating (makes the layer
excitable in the next
timestep)

memory layers

input



The learning mechanism in detail




The learning mechanism in detail




The learning mechanism in detail

Hebbian
learning

Note:

This is just a simplified
visualization, the actual dw is:

oW x §-x-r(o)



The learning mechanism in detail

error L_t]-o (memory)

error L],

error L[],
target

output
input

phase
depression potentiation
o/.\
P \ °
\ o
® \ * ~
® ® —.® ®
o o—eo ® o—o

Target > Output
— Hebbian learning in
potentiation phase

Target < Output
— Hebbian learning in
depression phase
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feedforward phase

potentiation phase

depression phase

input hid out error |}/,1 back |1/ pause [/, | back /]

layer identity

|
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relay x

relay h

_derivative of
activation function

input
start learning h
hidden layer

stop learning h

backpropagated
local gradient

start learning o

output
stop learning o

negative transpose

positive

local gradient
negative
local gradient

target

Los Alamos
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time steps

Alpha Renner, Forrest Sheldon,
Anatoly Zlotnik, Louis Tao, Andrew
Sornborger. "The Backpropagation
Algorithm Implemented on Spiking
Neuromorphic Hardware."
arXiv:2106.07030 [cs.NE].
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Implemented on Spiking Neuromorphic Hardware." arXiv:2106.07030 [cs.NE].



Results Preview: MNIST

Validation — 96%

14 Loihi timesteps per training
sample
Inference after 3 timesteps

Loihi)

676 FPS, 1.48 ms/sample
0.592 mJ/sample
Energy-delay product = 0.9us
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Roughly 2 orders-of-magnitude T e,
less power used relative to GPU
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Summary

Los Alamos

AAAAAAAAAAAAAAAAAA

We have implemented the first backpropagation algorithm that is
fully on-chip with no computer in the loop or help from the on-chip
X86 microprocessors.

Compared to an equivalent implementation on a GPU, there is no
loss in accuracy, but there are about two orders of magnitude
power savings in the case of small batch sizes which are more
realistic for edge computing settings.

The network model we propose offers significant opportunities as a
building block that can, e.g. be integrated into larger SNN
architectures that could profit from a trainable on-chip machine
learning module.

8/15/2022 42



Questions?

- .
() Los Alamos 8/15/2022 43



May 9, 2022 =

Matthew Sgambati
HPC System Admini

=
v
E
B
-

An overview of the GPU hardware
and System Conda Environments
for AI/ML on HPC

m ldaho National Laboratory




Jlll Overview

« Sawtooth
- 108 NVIDIA V100 SMX2s
- 100Gb/s NVIDIA Mellanox EDR InfiniBand

 Hoodoo
- 44 NVIDIA A100 SMX4s
— 200Gb/s NVIDIA Mellanox HDR InfiniBand

IDAHO NATIONAL LABORATORY



Jlll sawtooth

* V100 SXM2

GPU Architecture NVIDIA Volta
MNVIDIA Tensor Cores 640
NVIDIA CUDA® Cores 5,120
Double-Precision 7 8 TELOPS
Performance
Single-Precisi

ingle-Precision 15.7 TELOPS
Performance
Tensor Performance 125 TFLOPS
GPU Memory 32 GB HBM2
Memory Bandwidth 900 GB/sec
ECC Yes
Interconnect
Bandwidth 300 GB/sec
System Interface NVIDIA NVLink™
Form Factor SXM?2
Max F‘"DWEF. 300 W
Comsumption
Thermal Solution Passive

Compute APls

CUDA, DirectCompute, OpenCL"™, OpenACC®

IDAHO NATIONAL LABORATORY




- Hoodoo

- A100 SXM4

FP&4 9.7 TFLOPS
FP&4 Tensor 19.5 TFLOPS
Core
FP32 19.5 TFLOPS
Tensor Float 56 TFLOPS | 312 TFLOPS*
32 (TF32)
BFLOAT16 12 TFLOPS | 624 TFLOPS*
Tensor Core
FP16 Tensor 12 TFLOPS | 624 TFLOPS*
Core
INT8 Tensor 624 TOPS | 1248 TOPS*
Core
GPU Memory 40GB

HBM2
GPU Memory 1,555GB/s
Bandwidth
Max Thermal LOOW
Design Power
(TDP)
Multi-Instance Upto7
GPU MIGs @

5GB

Form Factor SXM

Interconnect

NVLink: 600GB/s

*  With sparsity
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B Sawtooth

« Connection structure
— NVLink — 300GB/sec
- 1B EDR —100Gb/sec

IDAHO NATIONAL LABORATORY




- Hoodoo

« Connection structure
— NVLink — 600GB/sec
- |B HDR —200Gb/sec

IDAHO NATIONAL LABORATORY



Jlll System Conda Environments
Sawtooth

OpenAl Gym

Python 3

Python 3.7 Boltz TraP2

Python 3.7 Pytorch 1.4

Python 3.7 Rapids 0.13

Python 3.7 Tensorflow 1.15

Python 3.7 Tensorflow 2.1 GPU
Python 3.7 Tensorflow 2.1 Horovod
Python 3.7 Tensorflow 2.4 gpu
Python 3.8 Rapids 22.04

R 3.6.1
Tensorflow 2.5

pymatgen
Pytorch-1.8.1

IDAHO NATIONAL LABORATORY



Jlll System Conda Environments
Hoodoo

* Python 3

Fastai PyTorch CUDA 11.2
PyTorch 1.11.0 Horovod Cuda 11.4
Pytorch 1.7.1 Horovod Cuda 11.1
pytorch 1.8.1

Tensorflow 2.4 Horovod Cuda 11.1
Tensorflow 2.4 Horovod Cuda 11.2
tensorflow-2.8

IDAHO NATIONAL LABORATORY



Questions?
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Battelle Energy Alliance manages INL for the U.S. Department of Energy’s Office of Nuclear Energy.
INL is the nation’s center for nuclear energy research and development, and also performs research
in each of DOE's strategic goal areas: energy, national security, science and the environment.
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Brandon Biggs
INL/MIS-22-67115

Management of Al/ML Programming
Environments
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ML/AI Programming
Scenarios

[

Managing virtual
environments with
Conda

N

-

How INL HPC uses
Conda

\

Conda vs other tools

IDAHO NATIONAL LABORATORY



Jlll Scenario - You want to run a model requiring
Tensorflow 2.8 and Horovod

« What kind of compute resources do you need?

* If you wanted to set this up locally, you’d have to manage the software stack
yourself (Conda, CUDA, RAPIDS, Docker, MPI, etc)

* On INL HPC you can load a module or start a container

« Can also use some existing infrastructure to create your own environment
$ module load conda
$ conda create -n “tensorflow 2.8 horovod” --python=3.8
$ conda activate tensorflow 2.8 horovod

IDAHO NATIONAL LABORATORY



I Scenario - INL HPC is missing a package or
framework that | need...

* If you're looking for a framework or package that we don’t already have let us
know by creating a support ticket by emailing hpcsupport@inl.gov
* You can also use the environments that we setup and add your own packages:
$ module load conda
$ conda activate “tensorflow 2.8”
$ pip install --user PACKAGE

IDAHO NATIONAL LABORATORY




Il Managing Virtual Environments with Conda

- Package Management
— Software packages
— Dependencies (more than just other
Python packages!)
- Manages environments
— Different versions of software
— Different environment requirements
* R vs Python Ruby vs Lua vs ...

» TensorFlow vs Pytorch vs FastAl vs
RAPIDS vs ....

IDAHO NATIONAL LABORATORY



- Conda vs Other Tools

» Conda vs pip
— We use both together
— Conda has been great for dependency resolution
on older operating systems like CentOS7

— Use Conda to create environment and download some packages, pip for
others

— Some frameworks are dropping support for pip
« RAPIDS dropped support for pip in 201911

« Conda vs Containers
— We’'re in the early stages of using containers for reproducibility
— Conda isn'’t great at being reproducible or portable. Basically, start from

scratch
IDAHO NATIONAL LABORATORY

— Users don’t need root to build a Conda environment

[1] https://medium.com/rapids-ai/rapids-0-7-release-drops-pip-packages-47fc966e9472



Jlll How INL HPC uses Conda

« 33 General environments
— 11 variants/versions of TensorFlow
— 6 variants/versions of PyTorch
— 2 versions of RAPIDS

« Setup as Jupyter Notebook kernels allowing
people to change environments with one click

 Allow users to create their own Python
environments in their home directory orin a
project directory

HPCY. 3 petabyis

N U M BERS About 1.2 times as much as
a human brain

GPUs — CPUs
1 Q& NVIDIA Tesla \ 15 5,296 compute cores

V100 32GB Intel Xeon Broadwell

Intel Xeon Gold Skylake
44 NVIDIA Tesla 1 5 Intel Xeon Platinum Cascade Lake g

(]
A100 40GB MW AMD EPYC Rome

S " of power I
7,000 -
square 100
" 6 1 6 4 terabytes - data center
©. 0. g oineroy N NEEE
asa Blu-r;y Disc ==
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Jupyter Notebooks — Open
OnDemand

Bradlee Rothwell

High Performance Computing
Idaho National Laboratory

May 26, 2022
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Step 1: Log onto HPC OnDemand

&« C & hpcondemand.inl.gov/pun/sys/dashboard 2 % » 0

INL HPC OnDemand  Files Information @ Help~

& Logged in as rothbh

Welcome to INL HPC OnDemand!

Note: Files located in /scratch older than 90 days are automatically deleted.

> 0007402

Message of the Day

"Whoopee! Man, that may have been a small one for Neil, but it's a long one for me!" —- Pete Conrad (Apolio 12)

ldaho National Laboratory
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Step 2: Selecting a Jupyter Notebook

&« C & hpcondemand.inl.gov/pun/sys/dashboard

INL HPC OnDemand  Files~  Jobs~  Clusters~ Interactive Apps~  Information~ ~ NCRC~  Training~ @ My Interactive Sessions

Information - NCRC~ Tra

Deskiops
ClLinux Desktop
ClLinux Desktop with Visualization

Firefox
@ HPC URLs (hpcgitlab, hpc training, hpc website)

@ Password Reset/Account Renewals

IDE
«) Visual Studio Code Server

Jupyter
= Jupyter
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Step 3: Launching a Jupyter job

Home / My Interactive Sessions / Jupyter

Interactive Apps
Jupyter version: c3f9e0a
Deskiops

This app will launch a Jupyter Lab or Notebook server
CLinux Desktop

Project
[JLinux Desktop with Visualization

hpc
Firefox

This is the project argument provided to the job scheduler. Example: moose,

@ HPC URLs (hpcgitiab, hpc
neams. For a complete list of projects, go to projects page on hpcweb

training, hpc website)

.
@ Passward ReseAccount Jupyter Backend L P rOJ e Ct N a l I l e
Renewals GPU - Sawloaih v
IDE

Select what type of computational hardware you'd like to have attached to
Gt | * Cluster — Sawtooth
Jupyter

CPUs/GPUs Requested

Min 1 | Max 4. Requesting GPUs changes the amount of CPUs requested.

NCRC
* Number of Hours
= NEAMS Workbench 168
Herd Warning max walltime could be different between systems.
£ Code Execution Please see queues secton on the cluster queues for more information
Tests

Backend Max Hours
€ Build Test Suite

CPU - Lemhi 72
Training Videos
¥ Bison Videos CPU - Sawtooth 168

GPU - Sawtooth 168
Q Relap 5

GPU - Hoodoo 168
& Sockeye

[J Use advanced submission settings

WELILTE Use advanced settings to change your Jupyter server type, number of nodes
Tutorials for your job, or enter project information.

= Al/Machine Learning Tutorial

*The Ju| er session data for this session can be accessed under the data root directory.
= MIT Symposium Summer 2021 Pyt g
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Step 3: Launching a Jupyter job

Home / My Interactive Sessions

Interactive Apps Jupyter (2176029 sawtoothpbs) Queued
Desktops o

| Created at: 2022-05-02 11:55:44 MDT @i Delete
CILinux Deskiop Time Requested: 153 hours
[DLinux Desktop with Visualization Session ID: 50f88c7b-97c6-4832-b735-be43eb7 1bdeb
Firefox
@ HPC URLSs (hpcgitlab, hpc Please be patient as your job currently sits in queue. The wait time depends on the number of cores as well as time
training, hpc website) requested.

@ Password Reset/Account
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.
Step 4: Select a Jupyter project

— Jupyter Quit | | Logout
Files Running Clusters
Select items to perform actions on them. Upload | Neww | Z

Do | - mi MName < | Last Modified File size
O O arbiter OO a month ago
. . O commands a month age
Select a project from home directory _ _ .
O R [0 [0 Desktop 7 months ago
[J O Documents a month ago
Create a neW ro'eCt [0 [0 Downloads 7 months ago
p J 0 O files a month ago
[J [0 hpcdatawarehouse 3 months ago
[J O miniconda3 2 years ago
O O Music 7 months ago
[0 O newwebsite 9 months ago
[0 [ old_home 9 months ago
[J O ondemand 3 months age
[0 O ondemand-dev ayear ago
[ [ ondemand_project ayear ago
[J [ Pictures 7 months ago
[J 3 Public 7 months ago
[0 0[O publications 3 years ago
O 3 rabbitmg & months ago



Running Jupyter Cells

: Jupyter tutorial Last Checkpoint: 16 minutes age {autosaved)

File Edit

B+ 8 @ B 4 ¥ MRun

View Insert Cell Kemel

Widgets

B C W Markdown

Help

Trusted

A

Logout

| Python 3 ©

Jupyter Tutorial

Load the libraries

sepal-length sepal-width petal-length petal-width

« numpy
« pandas
« matplotlib
In [2]: 1  import numpy
2 import matplotlib
3 import pandas
4
5 names = ['sepal-length’, "sepal-width', 'petal-length', 'petal-width®, ‘species']
o iris = pandas.read_csv("iris.data", names=names)
In [3]: 1  iris
Qut[3]:

species

0 5.1
1 48
2 47
3 46
4 50
145 6.7
146 83
147 6.5
148 6.2
149 59

150 rows x 5 columns

35
30
32
3
36

30
25
3.0
34
30

14
14
13
15
14

52
50
52
54
5.1

0.2
0.2
02
0.2
0.2

23

20

23
1.8

Iris-getosa
Iris-getosa
Iris-setosa
Iris-setosa

Iris-setosa

Iris-virginica
Iris-virginica
Iris-virginica
Iris-virginica

Iris-virginica

In[ ]:

ldaho National Laba
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from tensorflow.keras.models import Sequential

In the medel we create for this DFT example, we are going to incorperate just one type of layers, the dense layer. Dense layers are just standard fully connected neural network layers.

from tensorflow.keras.layers import Dense

These are some commeon helper libraries: numpy for handling arrays, pandas for reading in data, matplotlib for plotting, and scikit-learn to help randomly split our dataset into training and validation sets.

import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split

To get started, we first need to generate some data to train on. We will randomly create 10,000 sets of signals each of length 64 and then use numpy's FFT method to compute the DFT.

N = 64

batch = 12202

sig = np.random.randn{batch, N) + 1j*np.random.randn(batch, N)
F = np.fft.fft(sig, axis=-1)

MNow we have two numpy arrays: sig and F containing 10,000 randomly generated signals each of length 64 and the corresponding DFT, respectively.
print(sig.shape)
print(F.shape)

(10060, &54)
(10060, &54)

To make it easier to train, we will split the real and imaginary parts of the signal and DFT. The first half of the inputs holds the real parts, the second half helds the imaginary parts.

X = np.hstack([sig.real, sig.imag])
Y = np.hstack([F.real, F.imag])

The train_test_split method from scikit-learn is really useful in order to randomly split our single dataset (the signal in variable X and the DFT in variable Y) into a training set (X_train, Y_train} and validation set
(X_test, ¥_test). We can specify the size of the validation set -- 10% of the dataset in this case.

X_train, X _test, Y_train, Y_test = train_test_split(X, Y, random_state=42, test_size=0.1)

In Keras, there are three ways to create models. The simplest is Sequential. which enables us to specify a sequential list of layers for the network (the other two ways are the Functional APl and Model Subclassing -

- you can learn more about these in the Keras model documentation).

Our model is trivially simple: no hidden layers, no activation function, no bias, just a dense layer with 2N inputs and outputs where N is 64 in our example.

model = Sequential([Dense(2*N, input_dim=2*N, use_bias=False)])

Idaho National Lab
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def create_model:
# Create a Keras Sequential model
model = Sequential()

# Add the input Layer to handle the input vector shape in_dim (32, 32, 3)
model. add(Input(shape = (X_train[@].shape[@], X_train[e].shape[1]), name = "Input_Layer"™))

# Since we did not flatten the input dota, we will wuse this special Layer to do that for us
model.add(Flatten({name = "Flatten_Layer™))

# Build all hidden Layers for our model
model. add(Dense(128, activation = ‘relu’, name = "Hidden_Layer_1"})

# Build the output Layer and use the softmax activation function
model.add(Dense(1@, activation = ‘softmax’, name = "Output_Layer™))

# Compile the model and collect the accuracy metric because we will Look at this te determine our models current status
model, compile(optimizer=Adam(), loss="categorical_crossentropy', metrics=['accuracy'])

return model

MNow that we have defined our model lets look at summary of it to make sure it looks the way we expected. It is a 7-layer model (The summary function will not show the input layer). We are geoing to do this in

two different ways. The first is via the model summary function that prints a text representation of the model and the second is via the Keras Utils plot_model function.

model = create_model()
model. summary ()

plot_model(model, show_shapes=True)
Mow that we have a model, lets train it with a set of parameters
model_history = model.fit(x=X_train, y=y_train_one_hot, batch_size=32, epochs=1}

By allowing the model to train for 10 epochs we can see from the trainging results it got to an accuracy of around 47% on the training data. Now lets see how well it generalizes to our test data, which is data it

has not seen before.

In order to accomplish this goal we will need to first use the model to predict the label of each data sample in the test set and then we will compare this to the actual labels in y_test.

y_test_predictions = model.predict(X_test)

Lets lock at one of these predictions

y_test_predictions[@]
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Comments

@ B|[a]+|[wrn[m]c|n( =
+ # Jupyter Tutorial
1 ###% Load the libraries
2 | * pumpy & B 4+ % MHMRun B C M Code v m
3  * pandas
4 | * matplotlib
Jupyter Tutorial
Load the libraries
>
= numpy
= pandas

« matplotlib



Kernels

File Edit View Insert Cell Kemel Widgets Help Truste
B+ 3 @B 4 ¥ RN e (=]
Restart

Restart & Clear Output
Restart & Run All

Jupyter Tutc reconneat

Shutdown
Load the libraries Change kernel » COpenAl Gym
* numpy Paraview Jupyter
. f:allgf:;nn Python 3
Python 3.6 Tensorflow 1.15 Keras 2.1.6 GPU
N —  Python 3.7 BoltzTraP2 3
In [2]: 0 i:;’g:tt r”ﬂ:ii)l'o 15 Python 3.7 Pytorch 1.3.1
2 import pandas Python 3.7 Pyterch 1.3.1 Horovod
: names = ['sepal-length’, "sepal-width Python 3.7 Pytorch 1.4 ies']
6 iris = pandas.read_csv("iris.data”, n Python 3.7 Rapids 0.13
~ Python 3.7 Tensorflow 1.15 L
In [4]:| 1 |diris ~ Python 3.7 Tensorflow 2.1 GPU L
out[4]: Python 3.7 Tensorflow 2.1 Horovod
sepal-length sepal-width petal-length petal-w Python 3 7 Tensorflow 2 4 gpu
0 & 49 4 Python 3.8 Rapids 22.04
1 44 3.0 14 R361
2 47 32 1.3 Tensorflow 2.5
3 46 31 15 Test Environment
4 50 36 14 fastai
gdal tensorflow 2.4 gpu
145 57 30 52 pymatgen
146 63 25 50 pytorch-1.1
147 65 30 52 pytorch-1.8.1
145 6.2 34 54 2.3 lris-virginica

149 59 3.0 51 1.8 Iris-virginica

AEA rraae v B rabamane



Step 5: Saving a Jupyter Project

« Will auto save
» Can also clear cells

In [3]: 1  import numpy
2  import matplotlib
3 import pandas
4
5 names = ['sepal-length’, 'sepal-width', 'petal-length', 'petal-width', 'species']
6  iris = pandas.read_csv("iris.data", names=names)
In [4]: 1 iris.plot(kind="scatter"”, x="sepal-length", y="sepal-width")
Out[4]: <matplotlib.axes._subplots.AxesSubplot at 8x2aaadfeoe3de>
454
.
404
L
£ 354
=
ki
5 3.0 ..
L L
L
254
2014 .
45 50 55 60 65 70 75 B0
iRl
In[ ] 1  dmport numpy
2 import matplotlib
2  import pandas
a
5 names = ['sepal-length’, 'sepal-width', 'petal-length’', 'petal-width’, ‘"species']
6 iris = pandas.read_csv("iris.data”, names=names)
In[ ]: 1 iris.plot(kind="scatter”, x="sepal-length", y="sepal-width")
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* hpcsupport@inl.gov
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Idaho National Laboratory
HPC Storage

https://hpcweb.hpc.inl.gov/home/storage
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I Home Directories

== U BLLEMC

ISIUON

DELL/EMC Isilon storage system e
2.11 PB of storage e
12 x 40 GbE connections '

Disk Quota Limits for Home Directories

Backed up for disaster recovery
« Uses snapshots for quick file recovery
« Slowest storage

IDAHO NATIONAL LABORATORY




B Scratch

- IBM ESS

« Uses Spectrum Scale/gpfs on Sawtooth
— Lemhi uses NFS

* 1 PB of storage

* No Disk Quotas

 Files are deleted after 90 days
* Not backed up

* No snapshots

 Fast storage — IO heavy
Will be updating the system 2022 — More through-put and 2 PB of storage

IDAHO NATIONAL LABORATORY




Ram Disk and local SSD

Sawtooth
- /dev/shm — 94 GB

Lembhi
- [tmp SSDs — 155 GB
— /dev/shm — 94 GB

Hoodoo
— /local_storage — 1.8 TB
— /dev/shm — 252 GB

Space will be limited

Volatile — The data will be lost if the node goes down

IDAHO NATIONAL LABORATORY
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INL S22S - Al/ML Competition

* INL will host an artificial intelligence and machine learning competition this summer, the Summer 2022
Symposium (S22S).

* Come show off your skills and submit your results. Prizes will be handed out for the top performers.

» This symposium will consist of six one-hour sessions, which are split into half theory/instruction and half
questions and answers. Participants may join for either or both parts of a session.

* We will be reviewing the concepts we taught in last year’s S21S symposium and let you use those skills to
compete for the top prize.

* This free professional development opportunity is available to only INL staff and interns. The sessions will be
held on Wednesdays from 1 to 2 p.m. MT from June 15 to July 27.

June 15 June 22 June 29 July 13 July 20 July 27
Quick Review of S218, Review models like Random Review answers from warm-  Review Neural Networks, Question and Answer Review results and
including how to request Forest, Regression, and up data set. Introduce the including how to build a session. announce winners.
HPC access and how to use  Support Vector Machines. Go competition data set. Discuss  simple neural network on the
Jupyter Notebooks inside over the warm-up data set. rules and how we plan on competition data set.
of the HPC enclave. scoring the results.

The competition team is led by Cody Walker, Jacob Farber and Shad Staples.
For more information or to register please contact Shad Staples.


mailto:shad.staples@inl.gov

Big Data. Machine Learning Artificial Intelligence
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