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Il Moving from 2020 to 2021 - Symposium 5.0

 Last year INL sponsored quarterly symposiums on Atrtificial Intelligence (Al) and Machine
Learning (ML) approaches and activities related to science and engineering

— The “1.0 Symposium” focused on internal-to-INL activities and capabilities

- Symposium 2.0 we broadened the focus and highlighted activities and capabilities
around the nuclear industry and universities

- Symposium 3.0, we invited researchers provide updates on nuclear-related
applications using Al/ML

- Symposium 4.0, introduced the concept of "Trustworthy" as it relates to Al/ML

« We continue our discussion today on the importance of Trustworthy Al/ML development
and hear from researchers about their work in these areas
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11:00 (MDT) | Welcome, Introduction, and Agenda Craig Primer, INL

Machine Learning Pillars to Avoid Embarrassment for Trustworthy Rita Foster, INL

11:05 . Andrea Mack, INL
and Explainable ML Shaya Wolf, UofWY
11:35 Large-scale Optimization of Boiling Water Reactor Bundles with Maijdi Radaideh, MIT

Hybrid Reinforcement Learning and Evolutionary Intelligence

11:45 Robust data-driven sensor placement Krithika Manohar, UW I re s e n te rs
. |
11:55 Cybe.r-PhyS|caI.S.tate Awareness, Automated Response and Craig Rieger, INL
Confirmed Resilience

12:05 Human-Centered Artificial Intelligence Ben Shneiderman, UMD

12:35 Designing Explainable Al Torrey Mortenson, INL

Ramakrishnan (Ramki)

12:45 Explainable Dimensionality Reduction Using Scientific Constraints Kannan, ORNL

12:55 Closing Remarks Craig Primer, INL
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l Agenda

- Background

« ML/Graph Pillars
— Purpose
— Relevance
— Data Types
— Data Sources
- Data Management and more data
— Data Validation
— Explainable
— Trustworthy
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Il Why it is relevant to ML/AI Future

* Why ML Pillars ?
— Layers of validated assumptions for purpose, relevance, data and ML concepts
— Provide improvement, feedback to challenge all concepts
— Assist in explaining ML concepts to potential sponsors
- Enable refinement to match sponsor’s needs
 Gain critical partnerships based on problem, data and ML relevance

« Our experience with test corpora concepts enable multi-faceted analysis
— Benefits of rapid prototyping of new ML/Al methods
— Actionable ML results from Agile data sets
— Higher fidelity analysis with ability to challenge assumptions and results

Good research yields more questions enabling future research questions
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Jlll Machine Learning for Cyber Protection Critical
Infrastructure

Reverse Engineered Binaries

2017 - 2021

DOE-CESER

Firmware Indicator 2019 - 2022

Translation (FlT) — DOE-CESER

implemented 2 LDRD Competitive 2020 - 2023

methods from . o

RE@Scale Laboratory Call Grid Modernization Laboratory Call -

2020 - 2023 Geo Threat Deep Learning Malware (DLM)
I T

Grid Modernization Observable (GTO)

Laboratory Call —

Firmware Command

and Control (FC2)
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Case Study 1 — Structure Threat - Explainable

ML Pillars |Structured Threat
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I Machine Learning Explainable & Trustworthy Spectrum

Essential Abilities for Intelligence
* Flexibility - Respond to situations Take

> . advantage of fortuitous
GODEL,ESCHER,BACH: e
AN ETERNAL GOLDEN BRAID circumstances,
AMETAPHORICAL FUGUE ON MINDS AND MACHINES * Make sense out of ambiguous or

INTHE SPIRITOF LEWIS CARROLL
contradictory messages;

e Recognize the relative importance of
different elements of a situations;

* Find similarities between situations
despite differences which may
separate;

* Draw distinctions between situations
despite similarities which may link;

0
DOUGLAS R.HOFSTADTER

THE ULTIMRTE ANSWER : ‘
TO LIFE, THE UNIVERSE SRS C L& »  Synthesize new concepts by taking old
AND EVERYTHING IS: concepts and putting together in new

ways;

I I 2 * Generate novel concepts and ideas
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I ML Concept Pillars

Advers

1al Al Protections
rustworth
Explainable
Data Validation
Data Management
Data Sources
Data Type
Relevance
Purpose
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Jlll Case Study 1 - Structure Threat - Purpose

ML Pillars |Structured Threat Goal and Objectives
GTO will connect missing cyber threat EW

links and provide prediction, mapping to

> Leverage visualization mechanisms for GIS

situational awareness for impact, threat I
analysis and ad-hoc scenarios enabling e e e
better use of limited cyber defense L

resources.

Purpose

7
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Jlll Case Study 1 - Structure Threat - Relevance
ML Pillars

STIX

Structured Threat Information Expression

STIX

- International Standard Open Source Aliack PanarHelionships

- OASIS Standard

— Hundreds of Users

— Active Standard being Enriched

— Large use enables technology adoption

— STIX has proven to be Sharable, Actionable
and Implementable

— Relevance for Critical Cost Share Partners:
Splunk, Forescout, FortiNet, Eclypsium,
Asset Owners, and many original equipment
manufacturers
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llll Case Study 1 - Structure Threat — Data Type & Sources

ML Pillars Structured Threat
ATT&CK
Threat Feeds; Scraped, Enriched
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Jlll Case Study 1 - Structure Threat — Managed & Validation

ML Pillars |Structured Threat NI Analysis Andrea Mack
Data Managed |[Graph Database

Data Validation [Nodal Analysis

Nodal Analysis for Validation of

Assumptions
— Validate Test Corpora

Graph Databases for Management:
— Edges, Nodes, Properties
— Graph Traversal — Simple: vertices/edges, Breath

or Deep First Search — Validate Data Assumptions
Structure - Feature generation using iGraph — Subject Matter Expert Review
- Communities within graphs; — Repeatable Embeddings for ML — Graph
— Degree of the graph; CNN to Persistent Homology
~ Cliques mean/max clique lengths i.e., Feature Vector count validated by
— Global Transitivity simple Graph Queries

Deeper context rich narratives
— Descriptions, evidence-based sources
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Nodal Analysis — Validation of Assumptions
What are the Context of All and Two node graphs?

Mode
TC1: All Graphs TC2: All Graphs
1000- 250 asset . malware
_11 attack_pattern . marking_definition
500- | . campaiagn . abserved_data
w 750- o |
8 % | . course_of_action . report
o o
= Z 150- ;'I . domain_name threat_actor
Y— Y
O 500 © A identity tool
@ o
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[
2 250- 2 infrastructure . ¥_eclecticig_hypothesis
50-
. intrusion_set ¥_mitre_matrix
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Graphs 1-400 Graphs 1-6572 . location ¥_opencti_incident
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2.0- 20-
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Jll Nodal Analysis w

: 1-2 215 (53.7%) 5646 (85.9%)
ver 100 N raph Analysi
Over 100 Node G ap alysis 3-10 134 (33.5%) 131 (1.99%)
11-50 29 (7.25%) 42 (.6%)
Validation of Graph Context > 100 Nodes 51-100 9 (2.25%) 95 (1.45%)
13 static vs 658 Enriched Graphs with more tools, behaviors 101-max 13 (3.25%) 638 (10.0%)
Total 400 6572
TC1: Graphs with > 100 Nodes TC2: Graphs with > 100 Nodes
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ﬂ_rrFW
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Jlll Case Study 1 - Structure Threat - Explainable

ML Pillars Structured Threat iy N S
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Jlll Case Study 1 - Structure Threat - Trustworthy

Trustworthy Sources, Notes, ——
Observables & Scoring & N
Evidence-Based Threat: Sources, Reports,

Cyber Observables and Scoring to Trend Em M“ﬁ*
Threat Value; Provides Feedback

http/fsourceforge. net/docman/display _doc.php?docid=19314&group_id=22866

oval.org.mitre.oval:def: 11300

-
HR% C‘\FE 2‘[%}3 DE 55
S‘rﬂi. = - - “Bﬁ}
27914 ﬂ‘} 20031006
i - Update JBoss
__—appies 308 & 321
v\‘}qb, Remces CVE-2007-3645
- ‘fg‘ % b, Command ——
& ) 26031005 . gri— ﬁ .
i JBoss 3.2.1; 1 36 i
RHSA-2007:1048 TR TREIE
Command .

Injection
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Jlll Case Study 1 - Structure Threat - Trustworthy

Trustworthy Sources, Notes, —
Observables & Scoring E

Process for Trustworthy __W: Fy.
— Baseline Test Corpora
— Baseline Embeddings for ML “ﬁmw
— Validate Baselines

— Trend Quality Scores

— Accuracy, repeatability, False Positives, False Negatives
(F1)

— Feedback for enhancements and improvements
— Ability to Challenge Results

And Above All ... Attack Surface — Bryce McClurg

Curiosity




B Looking Ahead

Continued use of ML Pillars
— Refined by external ML experts, research partners and included in strategy
— Focus concepts for future sponsors and stakeholders
— Relevance and actionable results
— Higher fidelity data understanding with visualizations for explainable basis
— Enabling feedback and ability to challenge concepts for improvement

» Test Corpora
— Easier scope discussions — next iteration tasking
— Repeatable embeddings with further analysis and validation
— Two large test corpora Structured Threat and Translated Binaries

Future: critical infrastructure cyber protection issues
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Il Reinforcement Learning &
Evolutionary Computation

Reinforcement Learning

State Reward Action
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[l Why AI/ML for Fuel Optimization

- Expensive (fuel depletion is included and a bigger
assembly is optimized GE14-10x10).

- Combinatorial (dicrete input space)

+ High-dimensional (~10°° possibilities in the space)

* Heavily-constrained (43 constraints)

* Multi-objective (maximize burnup, minimize peaking
factor)

min f(7) { ZB-' — 10max(PPF3, ..., PPF33, PPFi, ... PPF3,  PPF3,. ..PPF3.)|, (29)

subject to the following constraints

mn ( ) 16 < \":I;Jlnsan <18, 5’2{: )=16 < ‘\‘pmsnn <18, 3’3{}} =13< ijztmn <16, (30)
q4(&) = PP f‘“.,/ <145, g5(¥) = PPI;';}‘ < 145, gs(d) = ;"pr"‘]'.;, < 1.45, (31)
gr(@) = PPFZ, <14, gs(@) = PPF3, <14, go(8) = PPF, < 14, 32)

And many more!

Radaideh, M. I., Forget, B., Shirvan, K. (2021). Large-scale design optimisation of boiling water
reactor bundles with neuroevolution. Annals of Nuclear Energy, 160, 108355.
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Jlll Divide-and-Conquer

« Step 1: Layout matchup
* E,G,N,,, GAD Positioning

« Step 2: PPF (40%) met (each CASMO case is 1.5s) -
» For all axial zones (PSZ, DOM, VAN1, VAN2) -

« Step 3: ALL PPF are met (each CASMO case is 8s)
* For all axial zones (PSZ, DOM, VAN1, VAN2) Lowest PP
* For 0%, 40%, 70% void .
* For Rodded/Unrodded conditions

 Step 4: deplete the bundle and get k_,,,/k;,, (each

CASMO case is 2 min)
» For all axial zones (PSZ, DOM, VAN1, VAN2)

« Step 5: Search for the best burnup & Lowest PPF

Full Space

Highest Bumup & )

Radaideh, M. I., Forget, B., Shirvan, K. (2021). Large-scale design optimisation of boili
reactor bundles with neuroevolution. Annals of Nuclear Energy, 160, 108355.
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- Large-scale Optimization

Partial-Length
- Height

Uniform Pins ¢s== | == Non-Uniform Pins

T

Partial-Length
Height

Partial-Length
— Height

Radaideh, M. I., Forget, B., Shirvan, K. (2021). Large-scale design optimisation
of boiling water reactor bundles with neuroevolution. Annals of Nuclear
Energy, 160, 108355.

Step 0 (Optional): Single-Zone Radial Optimization (CASMO4)
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I Looking Ahead

« With NO human intervention, fully optimized
bundle by a neuroevolution algorithms.

* Fuel engineers at Exelon are getting
reduced design efforts.

* The results are very competitive to the
designs used by Exelon/GE.

* The search can be done in 12-24 hrs using

a modest computing power of 32
processors!

* When scaled to the full core, expected
savings on fuel costs are about 3 million
dollars

— Still a preliminary guess, core
optimization is on the road for future
work.
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* Measurements crucial for prediction and control of complex systems

— Expensive to deploy
— Spatial constraints on placement
— Governing models unavailable

* Our approach: Robust, data-driven sensor placement
— Extract low-dimensional structure from data using ML
— Sparse sensing to determine important locations in state space

i

(APPLICATIONS)

Fluid Flows

Digital Twins

& Swarms

kmanohar@uw.edu

. \ ,
Autonomy Additive manufacturing Power grids

& Materials
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* Measurements crucial for prediction and control of complex systems
— Expensive to deploy
— Spatial constraints on placement
— Governing models unavailable

* Our approach: Robust, data-driven sensor placement

— Extract low-dimensional structure from data using ML

— Sparse sensing to determine important locations in state space
Sensors for classification, [Bruntc_m et al]

kmanohar@uw.edu UNIVERSITY of WASHINGTSON



Actuators: Sensors:

3 .
> Complex S_yst-eg\‘ S35

- -

Real-Time, Certifiable Control
with Uncertainty Bounds

\

Learn Model & Sparse
Sensors/Actuators

Extract Patterns and
Discover Coordinates

Sparse sensors/actuators [Manohar et al., IEEE CSS, 201:8]

' .
Model Point Sensors

UNIVERSITY of WASHINGTON



or- : : O TC s
Reconstruct x from measurements y in Y
a basis of descriptive features = | =
— Recover coefficients a of x in basis
(gappy POD, Everson & Sirovich 19995) <

Design sensing matrix C to minimize

error covariance of estimate

X ~ P,.a

y =Cx+n
~CP,.a+n

/L]

Recovered signal
a=(C®,)y
% =®,.(C®,)y

kmanohar@uw.edu

UNIVERSITY of WASHINGTON



* Reconstruct x from measurements y in Y
a basis of descriptive features = | =
— Recover coefficients a of x in basis
(gappy POD, Everson & Sirovich 19995) -

* Design sensing matrix C to minimize
error covariance of estimate

Varla — &] = ¢*[(C®,)' C®,] !

Recovered signal

det(C®,.)I C®., A — t
o, 4et(O2,) =GBy

X = f
subject to point sensors C | * = @, (C®,)'y

Brute-force search is NP-hard, scales combinatorially with N

kmanohar@uw.edu

/L]

UNIVERSITY of WASHINGTON



« Factor basis into orthonormal Q, upper-triangular R, and row permutation C
— Determinant objective = product of diagonal entries in R
— Use pivoting to introduce diagonally dominant structure
— Pivot indices correspond to optimal sensor locations (interpolation points in basis)
— Origin: empirical interpolation methods for model reduction  Drmac & Gugercin, SIAM, 2016

Update Introduce zeros below diagonal in R

/ \‘(®*****

C=QrR=Q

\

d C' =

* K K *
* ¥ ¥ *
* K K ¥

¥ ¥ * ¥
* K K ¥
¥ ¥ ¥ ¥
¥ ¥ * %
* K K ¥

* | * %
x | *x  *k
NI

A

Swapnaphwifedeconextriargest-column UNIVERSITY of WASHINGTON



* Reconstruction with minimal number of
optimal sensors (compared to random)

50

Sensors

Reconstruction

200 out of 44219 points

166

kmanohar@uw.edu

With & Without spatial constraints
[Clark, Askham, Brunton & Kutz 2019]




* Interpretable — each sensor corresponds to a
principal component (POD mode)
* Feature basis can be adapted to downstream

task
— POD modes ordered by energy content

— Robust PCA extracts outliers in data

— Dynamic mode decomposition into spatial
modes and frequencies

— Balanced POD modes ordered by joint
controllability and observability

« Adapt model to changing/failing sensors

kmanohar@uw.edu

POD/PCA
X = o3V’

Robust PCA
nzigl IL|l« + |IS|l; suchthatL+S =X

x(t) = ¥diag(exp(wt))a

UNIVERSITY of WASHINGTON



* Optimal sensors and actuations for control
— Leverage observable/controllable features

— QR adapted method nearly optimal (bottom right) y = Cx
for linearized Ginzburg—Landau discretized model

Observable and controllable subspaces

‘I [ ex Syste 81, 7T OX TOX OX Ox O %
— - "R
15t ; ‘ i P 293¢ O x O x O x O x
1L 31.4 QO X O x O x
: 401+ X O X O
T9 H
; 50.1 & | I I I | Oux I
: A4F T TTOXT T T®@ T X X Cx
| . (c)H |opt
' Actuators Optimal Feedback Control Sensors ' 817 Ox Ox Ox &
: (sparse sensors/actuators) o o o
: 308 - X X X
’ . - " O x O x
Balanced Offline learning !
--------------------------- Sensor/Actuator  |€----------eommeeoaeeoioood 61k ‘ O % ‘
Selection 42 0 4 2 0 2 4 6 8 10

kmanohar@uw.edu

UNIVERSITY of WASHINGTON




Robust sensors: predictive shimming

ensor Ensembles

>99% of all predicted
.| points have error < 0.005”

45
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Next Generation Control Systems:
From Reliable to Resilient

State Awareness provides essential knowledge
Threats are those elements that counter of operating parametersto fully characterize the
~humenenor, damagingstoms, malicious | Rﬁﬂmanm?ﬁlg“pmanagaome |
' ikt / indudingthosethatare notwel

characterized by traditional means

“Resilience” is the capacity of a control system to maintain state awareness
and an accepted level of operational normalcy in response to disturbances,
including threats of an unexpected and malicious nature. (2009)

IDAHO NATIONAL LABORATORY



Resilient Control Systems Evaluation

Disturbance and Impact Resilience
Evaluation Curve

optimum . | N7 AN
Operation | :
| |
| [
Adaptive | |
Capacity | | |
I\ _ | |
ili - - N — e —— L - ] |
Tl?riil#g::jc{ER] ’ -! : ll‘l'u'linimum : : l
. |1 |Mormalr:yI | [ :
ey - L | : | Responder Agility |
ineufficiency ol | system Agility (3) | R
I“I Brittleness (B)/Fragility :I: Res en-:'-,-':i‘ r:
- ; 1 I T 'i i= initial, =final, ]
Performance ti, dita, dai  tr dr ter, der ter, de 2>t te
Level (P) Cyber-Physical Disturbance — Time Latency (t) =»<4—Resources (t) —»
Cognitive Delay ——————— Time Latency (t)—# < Coordination (t)—»
Resilient System(s) Cyber-Physical Corruption Data Integrity (d}=»
Un-resilient System Cognitive Misjudgment Data Digression (d)=p
<> Phases of Disturbance
* Physical Disturbances - Cognitive Disturbances
— Time Latency Affecting Stability — Time Latency in Response
— Data Integrity Affecting Stability — Data Digression from Desired
*  Cyber Disturbances Response
— Time Latency = Responder
— Data Confidentiality, Integrity — Resources
and Availability — Coordination

IDAHO NATIONAL LABORATORY



- Distributed Infrastructure Cyber-Physical State Awareness

- Distributed Physical State-awareness
— Capability for optimally integrating, monitoring, and controlling the distributed
energy systems to prioritize the emergency response to critical infrastructure
despite uncertainties.
- Distributed Cyber State-awareness

— Capability for detecting and evaluating cyber threats to allow threat
accommodation and reconfiguration of the proposed resilient system against

attacks. 2*
Cybar Attack
T A r---'*""*_"‘ s // e
P o o,
Vs Ve I N = A
* RN "2, O3
‘K(“'K‘K—'K-K'kmrfﬂ?'u" pepet "|
X : T- _.

X
e
UM ‘ [/
w1 7
.
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- Cyber-Physical Common Operating Visualization

 Integrated Physical and Cyber State Awareness into a Visualization Engine

— The visible aspect of this solution is the display interfaces on devices that present
information to humans to make more efficient and effective emergency response

Grieg County Power System Stalus

IDAHO NATIONAL LABORATORY



- Anomaly Detection and Automated Response& Recovery

* Cyber-Physical Detection and Analysis of Anomalies
- Ingestion of cyber-physical alerts

— Tradeoff space analysis to validate mitigation benefit and physical impacts that
may result

— Role based actions at the human machine interface

- Automated Response and Moving Target Defense
— Software defined network response actions to redirect or limit traffic for analysis
— Moving target defenses to deceive actor

Cyber Feedback Loop

Attack

//Dl/turban
Cthr \\
N »| Control %ﬁ Field Control R

System 'k,;j Action - Device AN Reaction to'
Baseline Evaluation of Attack
Control Benefit

State
Awareness |+
Anomaly Detection Analytics Indicator Collection

IDAHO NATIONAL LABORATORY




Transformative Research and Deployable
Solutions for Inherent Infrastructure Resilience

Intelligent Cyber Detection
& Feedback Mechanisms

Functional Infrastructure
Dependency Modeling for
Data Driven Decision Making

Role-based, Cyber-Physical State
and Context Awareness

Adaptive and Agile Resilience
Control Architectures

Infrastructure Trustworthiness
Assessment & Proactive Control

Syt e

" o ——,
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- Annual Symposium e NS e -

http://www.resilienceweek.com EENEEERE S o g il

Join us for the Resilience Week
symposium to discuss how private

and public partners can wor Ll I
?ether to ensure a secure and ' "
able flow of energy across the Plenaries for 2020

nahon

= Jamey Sample, VP CSO (Xcel Energy)
= Kimberly Denbow, Managing Director, Security & Operations

* Topical/Track Areas (American Gas Association)

— Cognitive Systems = Laura Schepis, Sr Dir, National Security (Edison Electric

_ ‘i Institute)
Communications Systems = David Solan, Deputy Assistant Secretary for Renewable Power

— Control Systems (EERE)

— » Michael Pesin, Deputy Assistant Secretary for Advanced Grid
Cy_b,er Systems Research and Development (OE)

— Critical Infrastructure * Qinghua Li, Associate Professor, Department of Computer

— mmuniti Science and Computer Engineering (University of Arkansas)
Co unities » Mikhail Falkovich, Director, Information Security (Consolidated

— Industry Edison Company of New York, Inc.)

. . - = Niyo Little Thunder Pearson, Sr., CISSP, CCSP, Supervisor,
Part|C|pants Cybersecurity/Cyber Operations (ONE Gas)

— DOD/DOE National Labs » Edward Chiu, Cybersecurity Strategist (Chevron Corp.)

B . = Chick Macal (Argonne National Laboratory)
Cyber-Control-Energy Industries = Serena Reynolds, National Risk Management Center (NRMC),
— Universities Cybersecurity and Infrastructure Security Agency (CISA)

» Amanda Toman, Director of 5G Initiatives (Office of the Under
Secretary of Defense)

= Maria Dillard, Acting Director of Disaster and Failure Studies
(Engineering Laboratory) (National Institute of Standards and

\.!L/ @ Human Factors and TeChnOIOgy)
Ergonomics Society
ldaho Nafional Loborglory IDAHO NATIONAL LABORATORY
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Idaho National Lab ML-AI Trustworthiness Symposium, June 8, 2021

Human-Centered Al:
Reliable, Safe & Trustworthy

Ben Shneiderman @benbendc

Founding Director (1983-2000), Human-Computer Interaction Lab
Professor, Department of Computer Science

Member, National Academy of Engineering

Photo: BK Adams

UNIVERSITY OF
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Interdisciplinary research community
- Computer Science & Info Studies
- Psych, Socio, Educ, Jour & MITH

hcil.umd.edu
vimeo.com/72440805



Designing the User Interface

Design Theories

Direct manipulation
Menus, speech, search
Social Media
Information Visualization

www.cs.umd.edu/hcil/DTUI6
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Web ||n kS The University of Maryland, College Park (often referred to as the University
of Maryland, Maryland, UM, UMD, UMCP, or College Park) is a public
research university[m] located in the city of College Park in Prince George's
County, Maryland, approximately 4 miles (6.4 km) from the northeast border of
Washington, D.C. Founded in 1856, the university is the flagship institution of the
University System of Maryland. With a fall 2010 enroliment of more than 37,000
students, over 100 undergraduate majors, and 120 graduate programs,
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What is Human-Centered Al?




What is Human-Centered Al?

Amplify, Augment, Empower & Enhance People



Human-Centered A/

Human Values
Rights, Justice & Dignity




Human-Centered A/

Human Values
Rights, Justice & Dignity

Individual Goals
Self-efficacy, Creativity, Responsibility & Social Connections




Human-Centered A/

Human Values
Rights, Justice & Dignity

Individual Goals
Self-efficacy, Creativity, Responsibility & Social Connections

Design Aspirations
Reliable, Safe & Trustworthy
Team, Organization, Industry & Government




Stakeholders

Researchers

Developers

Business
Leaders
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Stakeholders
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Business
Leaders

Policy
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Oxford University Press (Early 2022) https://hcil.umd.edu/human-centered-ai/



Supertools

Digital Camera Controls Navigation Choices Texting Autocompletion

New Tab X
8:047 Wi - ‘ &
C 0O G umar}rlan|
ADJUST { © White House i = i
. : i Apps b (Bunt g ymarylan - Google Search
@  Work (University of Maryland) "l Q Q. umaryland
z . . @ umaryland medical school
B 26min B 6hr28  f 2hr57 264 ?
P W @ umaryland college park
) (93) _/adelphi
G 6o i < A
= (820) ’ R Q. umaryland blackboard
Silver Spring Colffge Park
(a10) Googles @ umaryland email
an)
(650) Q. umaryland acceptance rate
AuloZ.one Aut.o ‘
5 0 aryla
(501) ?Q Parts M @ umaryland zoom
(@)
Gmail Amazon.ca Yahoo Mail
| 26 min

Washinn

/%, Spelling correction
25 min

! VIDED PHOTO  PORTRAIT S0l | by | & 1 : : . i (’295}‘ apl -
8 f/ gREIT st congratulations

Recipients

€l

26 min (8.8 mi) congratulations

Best route now due to traffic conditions

'l'rafﬁc ——

It's great to hear from you... mistkas are hard to fix

mistakes ()




Active Appliances

Coffee maker, Rice cooker, Blender Dishwasher, Clothes Washer/Dryer
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Implanted Cardiac Pacemakers

Average ballery longewily
about 14 years
estimated as of March 15, 2018 ©
Right — | My Pacemaker My
~ atrium X : Transmissions
My Vitals Tracking My Symptom ‘

Journal

. —
LA =

' ¥ 4

Physical Activity Education




NASA Mars Rovers are Tele-Operated




Da Vinci Tele-Operated Surgery

“Robots don’t perform surgery. Your surgeon
performs surgery with da Vinci by using instruments
that he or she guides via a console.”

https://www.davincisurgery.com/ L E



Bloomberg Terminal
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Governance Structures for Human-Centered Al

GOVERNMENT REGULATION

INDUSTRY:
Trustworthy Certification:

External Reviews

ORGANIZATION:
Safety Culture:
Organizational Design

Independent Oversight:
Auditing Firms
Insurance Companies
NGOs & Civil Society
Professional Societies

Management Strategies:
Leadership Commitment
Hiring & Training
Failures & Near Misses
Internal Reviews
Industry Standards

TEAM:

Reliable Systems:

Software Engineering
Technical Practices:

Audit Trails, SE Workflows

Verification & Bias testing
Explainable Uls

ACM TIIS (Oct 2020) https://dl.acm.org/doi/10.1145/3419764
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TEAM

Reliable systems based on software engineering practices

1) Audit trails and analysis tools

2) Software engineering workflows
3) Verification & validation testing
4) Bias testing to improve fairness
5) Explainable user interfaces



TEAM

Reliable systems based on software engineering practices

1) Audit trails and analysis tools
2) Software engineering workflows
3) Verification & validation testing

4) Bias testing to improve fairness
5) Explainable user interfaces




Reliable Systems
Software engineering practices for a TEAM

1) Audit trails and analysis tools

“Flight Data Recorder for Every Robot”

- Retrospective analysis of failures
- Understanding near misses
- Analysis to support preventive maintenance



Reliable Systems
Software engineering practices for a TEAM

5) Explainable user interfaces

- Retrospective explanations (local & global)

New Goal: Prevent confusion and surprise
Prospective user interfaces
- Interactive, visual, exploratory



Mortgage Loan Explanations

Post-hoc Report

Enter amounts to request mortgage:

Mortgage amount requested

Household monthly income

Liquid assets

375000

7000

48000

e

Submit




Mortgage Loan Explanations
Post-hoc Report

Enter amounts to request mortgage:

Mortgage amount requested 375000
Household monthly income 7000
Liquid assets 48000
e 3
Submit

Enter amounts to request mortgage:

Mortgage amount requested 375000

Household monthly income 7000

Liquid assets 48000
Submit

We're sorry, your mortgage loan was
not approved. You might be approved

if you reduce the Mortgage amount
requested, increase your Household
monthly income, or increase your Liquid
assets.

Done




Mortgage Loan Explanations
Prospective User Interface

Post-hoc Report

Enter amounts to request mortgage:

Mortgage amount requested 375000
Household monthly income 7000
Liquid assets 48000
e 3
Submit

Enter amounts to request mortgage:

Mortgage amount requested 375000

Household monthly income 7000

Liquid assets 48000
Submit

We're sorry, your mortgage loan was
not approved. You might be approved

if you reduce the Mortgage amount
requested, increase your Household
monthly income, or increase your Liquid

assets.

Adjust sliders to report your situation:

Mortgage amount requested

A
<> / \
L
375000

Household monthly income

A
<P ¥\
L\
7000
Liquid assets
A
<>} ¥ \
LA
48000

Score needed
for approval

Your score

Done ]

Done




Recommenders: Whichbook.net
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Recommender Control Panels

Modify Attributes Recommended Songs Create Yf’“T
Better Life Index
acousticness: 40

_ Rate the topics according to their

importance to you:
instrumentalness: 60

danceability: 80 0 Housing q
. \”/ Grimes @ Income [ |
valence: 60 p— T 1
S N\ My December JoDs A
; Linkin Park =
@ Community o = |
energy: 40 ' e I X tune =
Slider technique SN G el 0 Environment TR
N\ i Korn .o
Civic Engagement
Good Riddance (Time of Y... =
O Health T B
Green Day
O Life Satisfaction E
9 Safety s e
To get more songs, modify the attribute(s) and click @ Work-Life Balance =
“Calculate Recommendations” again.







Stakeholders

Human-Centered Al

Human Values
Rights, Justice & Dignity

Researchers
Individual Goals Malicious
Self-efficacy, Creativity, Responsibility & Social Connections Actors
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4 N\ 7,
Design Aspirations 4=
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Team, Organization, Industry & Government I-E
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Policy r \ N\ /7 1
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Flawed
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Users HCAI Design Governance
Framework Metaphors Structures
G J \_ J \_ J

Oxford University Press (Early 2022) https://hcil.umd.edu/human-centered-ai/
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Human-Centered Artificial Intelligence: Reliable, safe & trustworthy, International Journal of §
Human-Computer Interaction 36, 6 (March 2020). https://doi.org/10.1080/10447318.2020.1741118

Design lessons from AI’s two grand goals: Human emulation and useful applications, /[EEE
8 Transactions on Technology & Society 1, 2 (June 2020). https://ieeexplore.icee.org/document/9088114

Bridging the gap between ethics and practice: Guidelines for reliable, safe, and trustworthy

Human-Centered Al systems, ACM Trans. on Interactive Intelligent Systems 10, 4 (Oct 2020). |
https://dl.acm.org/doi/10.1145/3419764

Human-Centered Artificial Intelligence: Three fresh ideas,
AIS Trans. on Human-Computer Interaction 12, 3 (Oct 2020). https:/aisel.aisnet.org/thci/vol12/iss3/1/

Human-Centered Al, NAS ISSUES 37, 2 (Winter 2021). https:/issues.org/human-centered-ai/

Summary & resources: https://hcil.umd.edu/human-centered-ai/




The Future is Human-Centered

Google Group
https://groups.google.com/g/human-centered-ai

Twitter Account
@HumanCenteredAI

Website
https://hcai.site



The Future is Human-Centered




= P

Torrey M

June 8, 2021

-- l_ Idaho National Laboratory




I Why do we need to design explainable ML/AI?

* Because of its application to things that matter.
— Critical infrastructure instead of cereal selection

 ML/AI is inscrutable at scale

— We don't really understand in a fundamental way how these algorithms work.
(Mickens, 2018)

- Stochasticity isn’'t a good explanation, e.g. gradient descent

e =]
Dr. James Mickens, 2018 Usenix Security Keynote. "Q: Why Do Keynote Speakers Keep Suggesting That Improving
Security Is Possible?

A: Because Keynote Speakers Make Bad Life Decisions and Are Poor Role Models"
IDAHO NATIONAL LABORATORY
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Designing for inscrutability — Role of Human Centered design



Il Human Centered Design from day one

* Involvement of human factors is critical
— Model implications
— Measure implications
— Every aspect of the model needs to be explainable.
* Impossible to predict what may need to be explained.

* Why human factors?

—Al/ML is often an inscrutable black box, do you know
what else is an inscrutable black box?

IDAHO NATIONAL LABORATORY



B Dave! Ry '“

Your HF colleagues have

* Any resemblanépﬁﬁytbg}gsgmﬁgqﬂ dead is purel
understanding and
designing for Daves

Designing for inscrutability
is human factors at its
core

Late or no involvement of
HF will lead to an Al/ML
algorithm that is not
transparent, explainable,
or trustworthy and
therefore unfit for use in
critical human
infrastructure

IDAHO NATIONAL LABORATORY



Il Predictive maintenance project

* Predicting the health of a circulating water pump
— XAI/HCAI as communication
— What if we could only talk to the model?

“How do you know?” “‘What is specifically wrong?”

“Are you sure?”

“How ‘unhealthy’ — Health of Pump
how bad is it doc?” Unhealthy
“Which sensors are “What should we do?”

you seeing?”

Can the model answer these? Clearly, precisely, and verifiably?

IDAHO NATIONAL LABORATORY




Predictive maintenance project (cont.)

* HF researchers worked closely with the model development team to shape the specific
user questions that the model needed to support

 Your ultimate visualization and display has to support the aspects of explainability

- By working with modelers, we were able to explore different methods of interpretability
like SHAP, feature interaction, and feature importance.

« Currently in the process of testing prototype visualization with users and will have
feedback on adjustments to the model moving forward

IDAHO NATIONAL LABORATORY



I Designing for trust, and failure

 Al/ML algorithms will fail and will fall under scrutiny

« Consider how to explain the mog
- Regulators |
— Policy makers
— The courts
— Operators
— Lay people
- Communities

- When it fails, what does it do? Hll

IDAHO NATIONAL LABORATORY
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Explainable Dimensionality Reductlon Using
Scientific Constraints SRR

Ramakrishnan Kannan

Group Lead, Discrete Algorithms
https://ramkikannan.github.io
https://github.com/ramkikannan
https.//ramkikannan.github.io/planc-api
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Unmixing

Understanding terrestrial information

in an unknown place from satellite

imOgeS Input Image

« |dentifying presence of hidden We |
unknown/foreign bodies in a scanned
image - Eg., contamination in food
articles, camouflaged explosives etc.

 Biological application - spectral
karyotyping, immunofluorescence,
live-cell imaging, drug discovery, and spatial/Abundance
tissue pathology — Eg., Unmixing on <;/] . Maps
Spectral imaging of the stained fissues 4
using mulfiple dyes.

* Physics and Material Sciences - SGR) = £ a0 wi(R)+N

Mapping properties to end-members.

Comparing different materials >
End Members R

OAK RIDGE | igese
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W Matrix Factorization (MF)

Representatives

N Samples k
A A

. -] -

Features

\"
! \\\\\\\\\\\\ I Samples distribution

over representatives

/ Low Rank Factors

¥

N\

2

/
Dimensionality Reduction - ML Community
X U Inverse Problem — Scientific Community
Low Rank Approximation — Numerical Community
Input Matrix Factorization — Internet community
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- Example 1 : NMF vs. PCA
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Both PCA and NMF are insufficient
They do not consider the neighbourhood information
To consider this information, we use regularization
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Atomic Motion of MoSe?2 — (hitps://smc-
datachallenge.ornl.gov)

mm ‘ |JA—L — S| ‘
Zhou, T. and D. Tao (2011). Godec:
Randomized low-rank & sparse matrix

decomposition in noisy case. International S u bJ eCt tO

conference on machine learning,

Omnipress. ')"ank(L) S T, CCle(S) S

......
COMPUTING
FACILITY
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B Symmetric NMF min||A—HH'||.

2

bl

F

. : _ T2 12 . W 1.7 A
« ANLS Variant i JA-WHT IS+ WH[E. o[ W Jar [ A ]
o Gauss Newton based Conjugate Gradient
— Computing Gradient (t+1) :x(t)—l—argminH IO ptr®
p

— Applying Gramian of Jacobian

2

Algorithm 2 [W H]=SymGNCG(A ,k,Smax)

Require: A € R} " is distributed across a /p X /p grid of
processors, k>0 is rank of approximation, p divides n
Require: Local matrices: H;;,X;;,P;;,Ri;,Y;; are n/pxk
1: Proc p;; initializes H;;
2: while stopping criteria not satisfied do

3: X=0 % Initialize xo=0
4:  R=Compute-Gradient(A ,H) % r=b—J"Jxo
5: pij sets Pij :lo?léij % p=r
6: pi; computes €;; = (Rj,Rij) {a) Original Image (&) Boundary Map {c) Segmented | maga
7: compute e"ld:ZL ,e‘i’;d using all-reduce across all procs Fig 13 Bounday delection and imege ssgmentalion wsing feahures gencraled by SymNME
8: for s=1 to smax do
9: Y = Apply-Gramian(H,P) % y=J"Jp
10: pij computes a;; =€ /(P;,Y ;) TABLE 1
11: compute a:Zi.jaU using all-reduce across all procs
12: pi; computes X;; =X;;+aP;; % x=x+ap PER-ITERATION PER-PROCESSOR COSTS FOR DENSE CASE
13: pi; computes Ri; =R;; —a'Y; %r=r—ay
14: pij computes ;= (Ri;,Ri;) Algorithm flops words messages
15: compute 5221-, j€ij using all-reduce across all procs 5 5
I6: piy computes Pi; =Ry +(e/e)Py; % p=r+pp ANLS kL O(m) O( :L/—’% +k2) O(logp)
17: =€
2 2
18: end for 2nk SmaxTk nk 2
19: pi; computes H;; =[H;; —X;;]+ % projected GN step GNCG D +O( D ) O( /P +3maxk ) O(Smaxlogp)

20: end while T
Ensure: H~argmin||A—HH |7
H>0

Ensure: H is nx k row-wise distributed across processors S. Eswar, K. Hayashi, G. Ballard, R. Kannan, H. Park and R. Vuduc:
Distributed-Memory Parallel Symmetric Non-negative Matrix
OAK RIDGE | Eperstie Factorization. Accepted at SC'20
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Hierarchical Non-negative Matrix Factorization

w A
Algorithm 2 Hierarchical Clustering

Require: A is mxn, k is target number of leaf clusters
1: function 7 = HIER-R2-NMF(A)
2: R =node(A) % create root node
: SPLIT(R)
: inject(Q,R.left) % create priority queue
: inject(Q,R.right) % of frontier nodes
Wo A,

HT

_ min

hi1,hi 220

hia

(w1 wo] B’ —a;
0,2

=_ min “hi,lwl+hi,2w2_aiH

hi1,hi 22

Recursively solve a Rank-2 NMF

3

4

5

6: while size(Q) <k do

7: N =eject(Q) % frontier node with max score
Figure 1: Hierarchical Clustering of DC Mall HSI 8: SPLIT(N left) % split left child

9: inject(Q,N .left) % and add to Q

10: SPLIT(N .right) % split right child

11: inject(Q, N .right) % and add 10 Q

12: end while

13: end function
Ensure: 7 is binary tree rooted at R with k frontier nodes,
each node has subset of cols of A and feature vector w

(O Internal Node
@ Frontier Node PN LN
") Leaf Node ™ v )

Figure 2: Hierarchy node classification

L. Manning, G. Ballard, R. Kannan, H. Park: Parallel Hierarchical Clustering using Rank-Two
Nonnegative Matrix Factorization. Communicated to HiPC'2020
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Multifrontal NMF (MFNMF)

—-u_ B
CyCy CLC 0 90y

B 7 al (1! =
e A ] | g h

An | i N Rs I I
B 1, é% Tl ), 656

(@) Reorder (b) Gather (c) NMF (d) Scatter Gt oe Reordered Matrix Two-level frontal tree

Apy Ao An | |
H Ayq A Ar
A E A
(a) Symmetric ND (b) Row ND (c) Column ND (d) Hybrid ND

OAK RIDGE | esostsie Piyush Sao, Ramakrishnan Kannan: Multifrontal Non-negative Matrix Factorization. PPAM
National Laboratory ES(I;?EH:DNG ( 72 2019: 543-554



https://dblp.org/pers/hd/s/Sao:Piyush
https://dblp.org/db/conf/ppam/ppam2019-1.html#SaoK19

Dense Tensor Factorization

OAK RIDGE | G
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Dimensionality Reduction in Scientific Data

» Multimodal characterization of materials —
comprehensive characterization from chemical composition
to functional properties on the nanoscale

3D — 4D nD Data 3D
Mass S%ecitrometry Optical Spectroscopy
ata

Optical
Spectrum

Mass Spectrometry ]

Adoasouydadg jeando

Hyperspectral

1 1
450 460 = s =0 o 220 o0

AFM Data - .

1 1
420 430 440

m/z

e

Scanning Probe Microscopy (Atomic
Force Microscopy)

OAK RIDGE | igese
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technique

band excitation piezoresponse force microscopy

(BE-PFM)
switching spectroscopy PFM (SS-PFM)
time relaxation PEM (TR-PFM)
AC sweeps
BE polarization switching (BEPS)
BE thermal
time relaxation BE (TR-BE)
FORC BEPS
time relaxation on sweep, BE
FORC time BE

FORC IV BEPS
FORC IV and FORC IV-Z

time-resolved Kelvin probe force microscopy
(KPEM)

open loop (OL) BE KPFM
general-mode PFM (G-PFM)
G-mode voltage spectroscopy (G-VS)

W How Big? (Kalinin et.al., ACS Nano, 2016)

dimensionality

3D, space and @

3D, space and voltage

3D, space and time

4D, space, w, voltage

4D, space, w, voltage

4D, space, @, temperature
4D, space, @, time

SD, space, w, voltage, voltage
SD, space, w, voltage, time

6D, space, w, voltage, voltage,
time

SD, space, w, voltage, cycle
4D, space, voltage, cycle

3D, space, time

4D, space, w, voltage
3D, space and voltage
ND, space, voltaged

target data set”
(256 x 256) X 64

(64 x 64) x 128

(64 x 64) x 128

(64 X 64) X 64 X 256

(64 X 64) X 64 x 128

(64 X 64) X 64 X 256

(64 X 64) X 64 X 64

(64 X 64) X 64 X 64 X 16
(64 X 64) X 64 X 64 X 64

(64 X 64) X 64 X 64 X 16 X
64

(64 X 64) X 64 X 64 X 16
(64 X 64) X 64 X 20
(60 x 20) x 1 x 10°

(256 x 256) x 32 X 16
(256 x 256) x 1.6 x 10*
(256 x 256) X 1.6 x 10°

target data

. C
S1Z¢€

32 MB

4 MB

4 MB
512 MB
256 MB
512 MB
64 MB
2 GB
16 GB
128 GB

4 GB
200 MB
8 MB

256 MB
4 GB
400 GB

1180 T T T T
100 GBf-
10 GBf-
(7}
N
(73] TR an sweep BE
© 1 GBf-
- FORC-BEPS
[} C-ly 3
O oo mal- ACsweep . OL-BE-KPFM
A — EPS
BE thermal
4 BE-PFM
10 MBL TR-BE
OAK RIDGE | Eperstie
COMPUTING
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Existing DR for NHOT - Matricization

Works only when some of the dimensions are independent
Matricizing NHOT is non-trivial

OAK RIDGE | asste
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_ NTF and Piezoresponse Force Spectroscopy

Component 1 el : R, Component 2 5078 S, 10
a) : . - Eo.se . e | D) p Eo.m— [
« 3600 g oo ik .
. g 0.82 709, ~ - Dual Exp Fit
veCTorIZed ) 0.0 0.2 Tr%4e [S] 0.6 0.8 0.0 0.2 Tr%g [S] 0.6 0.8
M 1 1
SpOTIOl 5 08
Locations 8 06
* 128 Time Steps 2 04 z
. o 0.2
« 16 different g AN T
0.0 - 0 10 - 0 10 §
voltage steps Voltage [V] Voltage [V] °
Z
- ° ® Raw — =
c) Component 3 30951, Zoomeen | d) Component 4 3 o8l . §
= . =
30.90* \5 21.08 8
< < ® Raw
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a o
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Fig. 4 NTF analysis on dynamic piezoresponse force microscopy data. Components 1-4 are shown in a-d, respectively, with corresponding
relaxation behavior (time tensor factor, red) and voltage dependence (voltage tensor factor, green) plots. Large color maps correspond to
normalized abundance maps for individual components.
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FLOPS vs Parameterization — Spatial Data

0.275'4

0.250 A

0.225 A

0.200 A

Loss

0.175 4

0.150 A

0.125 A

8 12 16 20 24 28 32 36 40
Rank (k)

SERERRRRER

Pravi Devineni, Vagelis Papalexakis, Ramakrishnan Kannan

OAK RIDGE | asste

National Laboratory | FACILITY




Convolutional Autoencoder
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