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Moving from 2020 to 2021 - Symposium 5.0

• Last year INL sponsored quarterly symposiums on Artificial Intelligence (AI) and Machine 
Learning (ML) approaches and activities related to science and engineering
− The “1.0 Symposium” focused on internal-to-INL activities and capabilities
− Symposium 2.0 we broadened the focus and highlighted activities and capabilities 

around the nuclear industry and universities
− Symposium 3.0, we invited researchers provide updates on nuclear-related 

applications using AI/ML
− Symposium 4.0, introduced the concept of "Trustworthy" as it relates to AI/ML

• We continue our discussion today on the importance of Trustworthy AI/ML development 
and hear from researchers about their work in these areas



Presenters 
and Topics

11:00 (MDT) Welcome, Introduction, and Agenda Craig Primer, INL

11:05 Machine Learning Pillars to Avoid Embarrassment for Trustworthy 
and Explainable ML

Rita Foster, INL 
Andrea Mack, INL
Shaya Wolf, UofWY

11:35 Large-scale Optimization of Boiling Water Reactor Bundles with 
Hybrid Reinforcement Learning and Evolutionary Intelligence Majdi Radaideh, MIT

11:45 Robust data-driven sensor placement Krithika Manohar, UW

11:55 Cyber-Physical State Awareness, Automated Response and 
Confirmed Resilience Craig Rieger, INL

12:05 Human-Centered Artificial Intelligence Ben Shneiderman, UMD

12:35 Designing Explainable AI Torrey Mortenson, INL

12:45 Explainable Dimensionality Reduction Using Scientific Constraints Ramakrishnan (Ramki) 
Kannan, ORNL

12:55 Closing Remarks Craig Primer, INL





Trustworthy AI/ML
Symposium
June 8, 2021

Rita Foster, Andrea Mack, Shaya Wolf
Infrastructure Security
Pillars to Avoid Embarrassment for Trustworthy & 
Explainable ML



Agenda
• Background
• ML/Graph Pillars

− Purpose
− Relevance
− Data Types
− Data Sources 
− Data Management and more data
− Data Validation 
− Explainable
− Trustworthy



Why it is relevant to ML/AI Future
• Why ML Pillars ?

− Layers of validated assumptions for purpose, relevance, data and ML concepts
− Provide improvement, feedback to challenge all concepts 
− Assist in explaining ML concepts to potential sponsors

• Enable refinement to match sponsor’s needs
• Gain critical partnerships based on problem, data and ML relevance

• Our experience with test corpora concepts enable multi-faceted analysis 
− Benefits of rapid prototyping of new ML/AI methods 
− Actionable ML results from Agile data sets
− Higher fidelity analysis with ability to challenge assumptions and results

Good research yields more questions enabling future research questions



Machine Learning for Cyber Protection Critical 
Infrastructure
Historical Journey

Reverse Engineered Binaries
2017 - 2021 
DOE-CESER 
Firmware Indicator 
Translation (FIT) –
implemented 2 LDRD 
methods from 
RE@Scale 
2020 - 2023 
Grid Modernization 
Laboratory Call –
Firmware Command 
and Control (FC2)

Structured Threat
2019 - 2022
DOE-CESER 
Competitive 
Laboratory Call
Geo Threat 
Observable (GTO)

Malware
2020 - 2023
Grid Modernization Laboratory Call –
Deep Learning Malware (DLM)



Case Study 1 – Structure Threat - Explainable

Russians in the Grid Example – Bryan Beckman

ML Pillars Structured Threat
Explainable STIG



Machine Learning Explainable & Trustworthy Spectrum
Essential Abilities for Intelligence
• Flexibility - Respond to situations Take 

advantage of fortuitous 
circumstances;

• Make sense out of ambiguous or 
contradictory messages;

• Recognize the relative importance of 
different elements of a situations;

• Find similarities between situations 
despite differences which may 
separate;

• Draw distinctions between situations 
despite similarities which may link;

• Synthesize new concepts by taking old 
concepts and putting together in new 
ways;

• Generate novel concepts and ideas



ML Concept Pillars
Adversarial AI Protections

Trustworthy
Explainable

Data Validation
Data Management

Data Sources
Data Type
Relevance
Purpose



Interactive GIS display of current and evolving 
threat

Test corpora …machine learning of 
similarities to past and predict evolving

Ad-hoc scenario capability…for Machine 
Leaning threat behavior

…

Case Study 1 – Structure Threat - Purpose
ML Pillars Structured Threat

Purpose

GTO will connect missing cyber threat 
links and provide prediction, mapping to 
situational awareness for impact, threat 
analysis and ad-hoc scenarios enabling 
better use of limited cyber defense 
resources.

Goal: Provide common operational picture for 
cyber defenders to stage limited resources

Leverage visualization mechanisms for GIS

Define structured threat to GIS layers for 
visualization

…

Capabilities/Gap Analysis Potential Outcomes

Scope definition
ML/AI Appropriateness origin and 
accounting for uncertainty 

Goal and Objectives



Case Study 1 – Structure Threat - Relevance
ML Pillars Structured Threat

Relevance STIX

Structured Threat Information Expression
− International Standard Open Source
− OASIS Standard
− Hundreds of Users
− Active Standard being Enriched
− Large use enables technology adoption
− STIX has proven to be Sharable, Actionable 

and Implementable
− Relevance for Critical Cost Share Partners: 

Splunk, Forescout, FortiNet, Eclypsium, 
Asset Owners, and many original equipment 
manufacturers



Case Study 1 – Structure Threat – Data Type & Sources 
ML Pillars Structured Threat

Data Type Structured Threat in Graph database
Data Sources Threat Feeds; Scraped, Enriched

STIG – Jed Haile

Ripple20 – Shaya Wolf



Case Study 1 – Structure Threat – Managed & Validation
ML Pillars Structured Threat

Data Managed Graph Database
Data Validation Nodal Analysis

Node Analysis Andrea Mack

Nodal Analysis for Validation of 
Assumptions
−Validate Test Corpora
−Validate Data Assumptions 

−Subject Matter Expert Review
−Repeatable Embeddings for ML – Graph 

CNN to Persistent Homology
i.e., Feature Vector count validated by 
simple Graph Queries

Graph Databases for Management:
− Edges, Nodes, Properties
− Graph Traversal – Simple: vertices/edges, Breath 

or Deep First Search
Structure - Feature generation using iGraph 

− Communities within graphs; 
− Degree of the graph; 
− Cliques mean/max clique lengths
− Global Transitivity

Deeper context rich narratives 
− Descriptions, evidence-based sources



Nodal Analysis – Validation of Assumptions 
What are the Context of All and Two node graphs?

Validation of Graph Context

Challenging the Value of 
one node graphs



Nodes TC1: 
Graphs

TC2: Graphs

1-2 215 (53.7%) 5646 (85.9%)
3-10 134 (33.5%) 131 (1.99%)
11-50 29 (7.25%) 42 (.6%)
51-100 9 (2.25%) 95 (1.45%)
101-max 13 (3.25%) 658 (10.0%)
Total 400 6572

Nodal Analysis 
Over 100 Node Graph Analysis

Validation of Graph Context > 100 Nodes
13 static vs 658 Enriched Graphs with more tools, behaviors



Case Study 1 – Structure Threat - Explainable
ML Pillars Structured Threat

Explainable Geo Threat 
Observable

Visualization
− Location of Cyber Attack

− Kiev, Ukraine December 
2016

− Electric Infrastructure Layers
− GIS
− Redrawn impact areas after ad-

hoc scenarios; enhanced threat 
and prediction

Kiev, Ukraine– Ryan Hruska



Case Study 1 – Structure Threat - Trustworthy
ML Pillars Structured Threat

Trustworthy Sources, Notes, 
Observables & Scoring

1.36

4.77

>6

Enrichment Scoring – Bryan Beckman

Evidence-Based Threat: Sources, Reports, 
Cyber Observables and Scoring to Trend 
Threat Value; Provides Feedback 



Case Study 1 – Structure Threat - Trustworthy
ML Pillars Structured Threat

Trustworthy Sources, Notes, 
Observables & Scoring

Process for Trustworthy
− Baseline Test Corpora
− Baseline Embeddings for ML
− Validate Baselines
− Trend Quality Scores 
− Accuracy, repeatability, False Positives, False Negatives 

(F1)
− Feedback for enhancements and improvements
− Ability to Challenge Results
And Above All …

Curiosity
Attack Surface – Bryce McClurg



Looking Ahead

Continued use of ML Pillars
− Refined by external ML experts, research partners and included in strategy
− Focus concepts for future sponsors and stakeholders
− Relevance and actionable results
− Higher fidelity data understanding with visualizations for explainable basis
− Enabling feedback and ability to challenge concepts for improvement

• Test Corpora
− Easier scope discussions – next iteration tasking
− Repeatable embeddings with further analysis and validation
− Two large test corpora Structured Threat and Translated Binaries 

Future: critical infrastructure cyber protection issues 



Questions?



Machine Learning & Artificial Intelligence 
Symposium 5.0
June 8, 2021

Majdi I. Radaideh
MIT Nuclear Science and Engineering
Large-scale Optimisation of BWR Bundles with Hybrid 
Reinforcement Learning and Evolutionary Intelligence



Reinforcement Learning & 
Evolutionary Computation

Particle Swarm Optimization

Grey wolf Optimization

Genetic Algorithms

Reinforcement Learning



Game-playing AI I am almost there 

27









Why AI/ML for Fuel Optimization
• Expensive (fuel depletion is included and a bigger 

assembly is optimized GE14-10x10).
• Combinatorial (dicrete input space)
• High-dimensional (~1065 possibilities in the space)
• Heavily-constrained (43 constraints)
• Multi-objective (maximize burnup, minimize peaking 

factor)
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And many more!

Radaideh, M. I., Forget, B., Shirvan, K. (2021). Large-scale design optimisation of boiling water 
reactor bundles with neuroevolution. Annals of Nuclear Energy, 160, 108355.



Divide-and-Conquer
• Step 1: Layout matchup

• 𝐸𝐸,𝐺𝐺,𝑁𝑁𝑔𝑔𝑔𝑔𝑔𝑔,𝐺𝐺𝐺𝐺𝐺𝐺 Positioning
• Step 2: 𝑃𝑃𝑃𝑃𝑃𝑃 (40%) met (each CASMO case is 1.5s) 

• For all axial zones (PSZ, DOM, VAN1, VAN2)
• Step 3: ALL 𝑃𝑃𝑃𝑃𝑃𝑃 are met (each CASMO case is 8s)

• For all axial zones (PSZ, DOM, VAN1, VAN2)
• For 0%, 40%, 70% void 
• For Rodded/Unrodded conditions

• Step 4: deplete the bundle and get 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐𝑔𝑔/𝑘𝑘ℎ𝑐𝑐𝑜𝑜 (each 
CASMO case is 2 min)

• For all axial zones (PSZ, DOM, VAN1, VAN2)
• Step 5: Search for the best burnup & Lowest 𝑃𝑃𝑃𝑃𝑃𝑃

29
Radaideh, M. I., Forget, B., Shirvan, K. (2021). Large-scale design optimisation of boiling water 
reactor bundles with neuroevolution. Annals of Nuclear Energy, 160, 108355.



Large-scale Optimization
Step 0 (Optional): Single-Zone Radial Optimization (CASMO4) 

Reinforcement 
Learning

(PPO)

2D Fuel Array
Fix Optimal 
Border Rods

Reinforcement 
Learning

(PPO)

Constraint Group 1

Evolution 
Strategies

Maximize 
Burnup

Minimize 
Peaking

.

.

.

Feasible Pattern 1

Step 1: Multi-zone Radial Optimization (CASMO4)

µrl 
Constraint Group 2

Constraint Group 3

Constraint Group 4

Feasible Pattern 2

Feasible Pattern 10

3D Fuel Array

Step 2: Axial Optimization (SIMULATE3)

Zone 1

Zone 2

Zone k

Zone k+1

Zone 3

h1

h3

h4

hk

Active Height

Grid Search 
for Optimal Heights

(if applicable)

Final Design

Zone 1

Zone 2

Zone 4

Zone k+1

Zone 3

Zone k

Zone 4

h2

Radaideh, M. I., Forget, B., Shirvan, K. (2021). Large-scale design optimisation 
of boiling water reactor bundles with neuroevolution. Annals of Nuclear 
Energy, 160, 108355.
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Results

Radaideh, M. I., Forget, B., Shirvan, K. (2021). Large-scale design optimisation of boiling water reactor 
bundles with neuroevolution. Annals of Nuclear Energy, 160, 108355.31

Highly efficient, 80 feasible 
designs in only 40000
iterations!

Standard RL, not efficient, 
14 feasible designs in about 
2.5 million iterations!

A speedup factor of ~𝟐𝟐𝟐𝟐𝟐𝟐 for neuroevolution!



Looking Ahead

B-NAT

PSZ

PLE

DOM

T-NAT

VAN2

15.2 cm

0.0 cm

123.3 cm

368.9 cm

228.6 cm

213.4 cm

317.9 cm

353.7 cm

VAN1

Vanished Rod 
(Coolant)

Plenum Tip 

Water Rod 
(Moderator)

GAD Pellet

UO2 Pellet

• With NO human intervention, fully optimized 
bundle by a neuroevolution algorithms.

• Fuel engineers at Exelon are getting 
reduced design efforts. 

• The results are very competitive to the 
designs used by Exelon/GE.

• The search can be done in 12-24 hrs using 
a modest computing power of 32 
processors!

• When scaled to the full core, expected 
savings on fuel costs are about 3 million 
dollars 
− Still a preliminary guess, core 

optimization is on the road for future 
work. 
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Questions?

B-NAT
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DOM

T-NAT

VAN2
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Robust Data-Driven Sensor Placement

Trustworthy ML-AI 5.0 Symposium

Krithika Manohar
University of Washington

June 8, 2021

Collaborators
Steven L. Brunton, UW

J. Nathan Kutz, UW



kmanohar@uw.edu 36

Scalable + optimal sensor placement

• Measurements crucial for prediction and control of complex systems
– Expensive to deploy
– Spatial constraints on placement
– Governing models unavailable

• Our approach: Robust, data-driven sensor placement
– Extract low-dimensional structure from data using ML
– Sparse sensing to determine important locations in state space
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Scalable + optimal sensor placement

• Measurements crucial for prediction and control of complex systems
– Expensive to deploy
– Spatial constraints on placement
– Governing models unavailable

• Our approach: Robust, data-driven sensor placement
– Extract low-dimensional structure from data using ML
– Sparse sensing to determine important locations in state space

Sensors for classification, [Brunton et al]
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Overview

Sparse sensors/actuators  [Manohar et al., IEEE CSS, 2018]



kmanohar@uw.edu 39

Sparse sensing for reconstruction

• Reconstruct x from measurements y in 
a basis of descriptive features 
– Recover coefficients a of x in basis 

(gappy POD, Everson & Sirovich 1995)
• Design sensing matrix C to minimize 

error covariance of estimate
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Sparse sensing for reconstruction

• Reconstruct x from measurements y in 
a basis of descriptive features 
– Recover coefficients a of x in basis 

(gappy POD, Everson & Sirovich 1995)
• Design sensing matrix C to minimize 

error covariance of estimate

Brute-force search is NP-hard, scales combinatorially with N



kmanohar@uw.edu 41

Sparse sensing via QR pivoting

• Factor basis into orthonormal Q, upper-triangular R, and row permutation C
– Determinant objective = product of diagonal entries in R
– Use pivoting to introduce diagonally dominant structure 
– Pivot indices correspond to optimal sensor locations (interpolation points in basis)
– Origin: empirical interpolation methods for model reduction

Introduce zeros below diagonal in R

Drmac & Gugercin, SIAM, 2016
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Robust reconstruction 
With & Without spatial constraints
[Clark, Askham, Brunton & Kutz 2019]• Reconstruction with minimal number of 

optimal sensors (compared to random)
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Robustness

• Interpretable – each sensor corresponds to a 
principal component (POD mode) 

• Feature basis can be adapted to downstream 
task
– POD modes ordered by energy content
– Robust PCA extracts outliers in data 
– Dynamic mode decomposition into spatial 

modes and frequencies
– Balanced POD modes ordered by joint 

controllability and observability
• Adapt model to changing/failing sensors

Robust PCA

POD/PCA

DMD
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Joint sensor & actuator placement

Observable and controllable subspaces

• Optimal sensors and actuations for control
– Leverage observable/controllable features
– QR adapted method nearly optimal (bottom right) 

for linearized Ginzburg–Landau discretized model
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Robust sensors: predictive shimming

>99% of all predicted 
points have error < 0.005”



kmanohar@uw.edu 46
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Craig Rieger, PhD, PE
Critical Infrastructure Security and Resilience
Cyber-Physical State Awareness, Automated Response 
and Confirmed Resilience



Next Generation Control Systems:
From Reliable to Resilient

Resilient Design provides an adaptive 
capacityand agilityfor response to threats,  
including those that are not well 
characterized by traditional means

Threats are those elements that counter 
normalcyand destabilize control systemnetworks 
–human error, damaging storms, malicious 
attacks, complex failures & interdependencies

“Resilience” is the capacity of a control system to maintain state awareness 
and an accepted level of operational normalcy in response to disturbances, 
including threats of an unexpected and malicious nature. (2009)

State Awareness provides essential knowledge 
of operating parameters to fully characterizethe 
decision space

48



Resilient Control Systems Evaluation

• Physical Disturbances
− Time Latency Affecting Stability
− Data Integrity Affecting Stability

• Cyber Disturbances
− Time Latency 
− Data Confidentiality, Integrity 

and Availability

• Cognitive Disturbances
− Time Latency in Response
− Data Digression from Desired 

Response 
 Responder

− Resources
− Coordination

49



Distributed Infrastructure Cyber-Physical State Awareness

• Distributed Physical State-awareness
− Capability for optimally integrating, monitoring, and controlling the distributed 

energy systems to prioritize the emergency response to critical infrastructure 
despite uncertainties.

• Distributed Cyber State-awareness
− Capability for detecting and evaluating cyber threats to allow threat 

accommodation and reconfiguration of the proposed resilient system against 
attacks.
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Cyber-Physical Common Operating Visualization

51

• Integrated Physical and Cyber State Awareness into a Visualization Engine
− The visible aspect of this solution is the display interfaces on devices that present 

information to humans to make more efficient and effective emergency response



Anomaly Detection and Automated Response& Recovery

• Cyber-Physical Detection and Analysis of Anomalies
− Ingestion of cyber-physical alerts
− Tradeoff space analysis to validate mitigation benefit and physical impacts that 

may result 
− Role based actions at the human machine interface

• Automated Response and Moving Target Defense
− Software defined network response actions to redirect or limit traffic for analysis
− Moving target defenses to deceive actor

52



Adaptive and Agile Resilience 
Control Architectures

Infrastructure Trustworthiness 
Assessment & Proactive Control

Transformative Research and Deployable 
Solutions  for Inherent Infrastructure Resilience

Role-based, Cyber-Physical State 
and Context Awareness 

Intelligent Cyber Detection
& Feedback Mechanisms Functional Infrastructure 

Dependency Modeling for 
Data Driven Decision Making
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Annual Symposium 
http://www.resilienceweek.com

Join us for the Resilience Week 
symposium to discuss how private 
and public partners can work 
together to ensure a secure and 
reliable flow of energy across the 
nation.
• Topical/Track Areas 
− Cognitive Systems
− Communications Systems
− Control Systems
− Cyber Systems
− Critical Infrastructure
− Communities
− Industry

• Participants
− DOD/DOE National Labs
− Cyber-Control-Energy Industries
− Universities

Plenaries for 2020
 Jamey Sample, VP CSO (Xcel Energy)
 Kimberly Denbow, Managing Director, Security & Operations 

(American Gas Association)
 Laura Schepis, Sr Dir, National Security (Edison Electric 

Institute)
 David Solan, Deputy Assistant Secretary for Renewable Power 

(EERE)
 Michael Pesin, Deputy Assistant Secretary for Advanced Grid 

Research and Development (OE)
 Qinghua Li, Associate Professor, Department of Computer 

Science and Computer Engineering (University of Arkansas)
 Mikhail Falkovich, Director, Information Security (Consolidated 

Edison Company of New York, Inc.)
 Niyo Little Thunder Pearson, Sr., CISSP, CCSP, Supervisor, 

Cybersecurity/Cyber Operations (ONE Gas)
 Edward Chiu, Cybersecurity Strategist (Chevron Corp.)
 Chick Macal (Argonne National Laboratory)
 Serena Reynolds, National Risk Management Center (NRMC), 

Cybersecurity and Infrastructure Security Agency (CISA)
 Amanda Toman, Director of 5G Initiatives (Office of the Under 

Secretary of Defense)
 Maria Dillard, Acting Director of Disaster and Failure Studies 

(Engineering Laboratory) (National Institute of Standards and 
Technology)

http://www.ieee.org/portal/site
http://www.inl.gov/
https://www.hfes.org/




Human-Centered AI:
Reliable, Safe & Trustworthy

Ben Shneiderman   @benbendc

Founding Director (1983-2000), Human-Computer Interaction Lab
Professor, Department of Computer Science

Member, National Academy of Engineering

Idaho National Lab ML-AI Trustworthiness Symposium, June 8, 2021

Photo: BK Adams



Interdisciplinary research community
- Computer Science & Info Studies
- Psych, Socio, Educ, Jour & MITH

hcil.umd.edu
vimeo.com/72440805 



Designing the User Interface

Design Theories

Direct manipulation
Menus, speech, search
Social Media
Information Visualization

www.cs.umd.edu/hcil/DTUI6 Sixth Edition: 2016



Web links

Tiny touchscreen keyboards                  Photo tagging



Spotfire

Treemaps
FinViz

NodeXL

EventFlow



What is Human-Centered AI?



What is Human-Centered AI?

Amplify, Augment, Empower & Enhance People



Human Values
Rights, Justice & Dignity

Human-Centered AI



Human Values
Rights, Justice & Dignity

Individual Goals
Self-efficacy, Creativity, Responsibility & Social Connections

Human-Centered AI
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Team, Organization, Industry & Government

Human-Centered AI
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Human-Centered AI

Oxford University Press (Early 2022)   https://hcil.umd.edu/human-centered-ai/



Supertools
Digital Camera Controls                           Navigation Choices          Texting Autocompletion

Spelling correction



Nutri Ninja Blender

Panasonic Rice Cooker

Cuisinart Grind & Brew Coffee Maker

Miele Dishwasher

General Electric Dryer

General Electric Washer

Coffee maker, Rice cooker, Blender                Dishwasher, Clothes Washer/Dryer

Active Appliances



Implanted Cardiac Pacemakers



NASA Mars Rovers are Tele-Operated



Da Vinci Tele-Operated Surgery

https://www.davincisurgery.com/

“Robots don’t perform surgery. Your surgeon 
performs surgery with da Vinci by using instruments 
that he or she guides via a console.”



Bloomberg Terminal 



Hospital Control Center



Counter Terrorism Center



Governance Structures for Human-Centered AI

ACM TIIS (Oct 2020)  https://dl.acm.org/doi/10.1145/3419764 



Governance Structures for Human-Centered AI

ACM TIIS (Oct 2020)  https://dl.acm.org/doi/10.1145/3419764 



Reliable systems based on software engineering practices

1) Audit trails and analysis tools 
2) Software engineering workflows
3) Verification & validation testing
4) Bias testing to improve fairness 
5) Explainable user interfaces

TEAM



Reliable systems based on software engineering practices

1) Audit trails and analysis tools 
2) Software engineering workflows
3) Verification & validation testing
4) Bias testing to improve fairness 
5) Explainable user interfaces

TEAM



Reliable Systems 
Software engineering practices for a TEAM

1) Audit trails and analysis tools 

“Flight Data Recorder for Every Robot”

- Retrospective analysis of failures
- Understanding near misses

- Analysis to support preventive maintenance



Reliable Systems 
Software engineering practices for a TEAM

5) Explainable user interfaces

- Retrospective explanations (local & global)

New Goal: Prevent confusion and surprise  -
Prospective user interfaces

- Interactive, visual, exploratory



Post-hoc Report
Mortgage Loan Explanations 



Post-hoc Report
Mortgage Loan Explanations 



Post-hoc Report
Mortgage Loan Explanations 

Prospective User Interface



Recommenders: Whichbook.net



Recommender Control Panels
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Human-Centered AI

Oxford University Press (Early 2022)   https://hcil.umd.edu/human-centered-ai/



Governance Structures for Human-Centered AI

ACM TIIS (Oct 2020)  https://dl.acm.org/doi/10.1145/3419764 



Human-Centered Artificial Intelligence: Reliable, safe & trustworthy, International Journal of 
Human-Computer Interaction 36, 6 (March 2020). https://doi.org/10.1080/10447318.2020.1741118

Design lessons from AI’s two grand goals: Human emulation and useful applications, IEEE 
Transactions on Technology & Society 1, 2 (June 2020). https://ieeexplore.ieee.org/document/9088114

Bridging the gap between ethics and practice: Guidelines for reliable, safe, and trustworthy 
Human-Centered AI systems, ACM Trans. on Interactive Intelligent Systems 10, 4 (Oct 2020).  
https://dl.acm.org/doi/10.1145/3419764

Human-Centered Artificial Intelligence: Three fresh ideas, 
AIS Trans. on Human-Computer Interaction 12, 3 (Oct 2020). https://aisel.aisnet.org/thci/vol12/iss3/1/

Human-Centered AI, NAS ISSUES 37, 2 (Winter 2021). https://issues.org/human-centered-ai/

Summary & resources: https://hcil.umd.edu/human-centered-ai/



The Future is Human-Centered 

Google Group 
https://groups.google.com/g/human-centered-ai

Twitter Account
@HumanCenteredAI

Website
https://hcai.site



The Future is Human-Centered 



Designing Explainable AI

Torrey Mortenson, INL
June 8, 2021



Why do we need to design explainable ML/AI?

• Because of its application to things that matter.
− Critical infrastructure instead of cereal selection

• ML/AI is inscrutable at scale
− We don’t really understand in a fundamental way how these algorithms work. 

(Mickens, 2018)
• Stochasticity isn’t a good explanation, e.g. gradient descent

• Dr. James Mickens, 2018 Usenix Security Keynote. "Q: Why Do Keynote Speakers Keep Suggesting That Improving 
Security Is Possible?
A: Because Keynote Speakers Make Bad Life Decisions and Are Poor Role Models"



Designing for inscrutability – Role of Human Centered design



Human Centered Design from day one

• Involvement of human factors is critical
− Model implications
− Measure implications
− Every aspect of the model needs to be explainable.

• Impossible to predict what may need to be explained.

• Why human factors?
−AI/ML is often an inscrutable black box, do you know 

what else is an inscrutable black box?



Dave!

• Any resemblance to any “Daves” living or dead is purely coincidental

• Your HF colleagues have 
spent their career 
understanding and 
designing for Daves

• Designing for inscrutability 
is human factors at its 
core

• Late or no involvement of 
HF will lead to an AI/ML 
algorithm that is not 
transparent, explainable, 
or trustworthy and 
therefore unfit for use in 
critical human 
infrastructure



Predictive maintenance project

• Predicting the health of a circulating water pump
− XAI/HCAI as communication
− What if we could only talk to the model?

“How do you know?”

“How ‘unhealthy’ –
how bad is it doc?”

“What is specifically wrong?”

“Are you sure?”

“What should we do?”“Which sensors are 
you seeing?”

Can the model answer these? Clearly, precisely, and verifiably?



Predictive maintenance project (cont.)

• HF researchers worked closely with the model development team to shape the specific 
user questions that the model needed to support

• Your ultimate visualization and display has to support the aspects of explainability
• By working with modelers, we were able to explore different methods of interpretability 

like SHAP, feature interaction, and feature importance. 
• Currently in the process of testing prototype visualization with users and will have 

feedback on adjustments to the model moving forward



Designing for trust, and failure

• AI/ML algorithms will fail and will fall under scrutiny
• Consider how to explain the model to:

− Regulators
− Policy makers
− The courts
− Operators
− Lay people
− Communities

• When it fails, what does it do? How does it communicate?

20 points

5 points

7 points





ORNL is managed by UT-Battelle LLC for the US Department of Energy

Explainable Dimensionality Reduction Using 
Scientific Constraints

Ramakrishnan Kannan
Group Lead, Discrete Algorithms
https://ramkikannan.github.io
https://github.com/ramkikannan
https://ramkikannan.github.io/planc-api
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Unmixing

R

wi

𝑔𝑔𝑖𝑖 𝐱𝐱

Spatial/Abundance 
Maps

End Members

Input Image

𝑆𝑆 𝐱𝐱,𝐑𝐑 = ∑𝑖𝑖 𝑔𝑔𝑖𝑖 𝐱𝐱 𝑤𝑤𝑖𝑖 𝐑𝐑 +N

• Understanding terrestrial information 
in an unknown place from satellite 
images

• Identifying presence of hidden 
unknown/foreign bodies in a scanned 
image - Eg., contamination in food 
articles, camouflaged explosives etc.

• Biological application - spectral 
karyotyping, immunofluorescence, 
live-cell imaging, drug discovery, and 
tissue pathology – Eg., Unmixing on 
Spectral imaging of the stained tissues 
using multiple dyes.

• Physics and Material Sciences –
Mapping properties to end-members. 
Comparing different materials 
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Matrix Factorization (MF)

≈

X U
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j j

im

n k
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Input
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Samples
Representatives

Samples distribution 
over representatives 

Dimensionality Reduction – ML Community
Inverse Problem – Scientific Community
Low Rank Approximation – Numerical Community
Matrix Factorization – Internet community
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Example 1 : NMF vs. PCA

TOF SIMS Data – Collaboration w/ Anton

PCA Eigen vectors

Both PCA and NMF are insufficient 
They do not consider the neighbourhood information
To consider this information, we use regularization
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Atomic Motion of MoSe2 – (https://smc-
datachallenge.ornl.gov)

min
𝐿𝐿,𝑆𝑆

𝐺𝐺 − 𝐿𝐿 − 𝑆𝑆 𝐹𝐹
2

subject to
𝑟𝑟𝑔𝑔𝑟𝑟𝑘𝑘 𝐿𝐿 ≤ 𝑟𝑟; 𝑐𝑐𝑔𝑔𝑟𝑟𝑔𝑔(𝑆𝑆) ≤ 𝑘𝑘

Zhou, T. and D. Tao (2011). Godec: 
Randomized low-rank & sparse matrix 
decomposition in noisy case. International 
conference on machine learning, 
Omnipress.
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Symmetric NMF

• ANLS Variant
• Gauss Newton based Conjugate Gradient

– Computing Gradient
– Applying Gramian of Jacobian

S. Eswar, K. Hayashi, G. Ballard, R. Kannan, H. Park and R. Vuduc: 
Distributed-Memory Parallel Symmetric Non-negative Matrix 
Factorization. Accepted at SC’20
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Hierarchical Non-negative Matrix Factorization

L. Manning, G. Ballard, R. Kannan, H. Park: Parallel Hierarchical Clustering using Rank-Two 
Nonnegative Matrix Factorization. Communicated to HiPC’2020

Recursively solve a Rank-2 NMF
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Multifrontal NMF (MFNMF)

Piyush Sao, Ramakrishnan Kannan: Multifrontal Non-negative Matrix Factorization. PPAM 
(1) 2019: 543-554

https://dblp.org/pers/hd/s/Sao:Piyush
https://dblp.org/db/conf/ppam/ppam2019-1.html#SaoK19
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Dense Tensor Factorization
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3D – 4D 
Mass Spectrometry 
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Scanning Probe Microscopy (Atomic 
Force Microscopy)

Dimensionality Reduction in Scientific Data
• Multimodal characterization of materials –

comprehensive characterization from chemical composition 
to functional properties on the nanoscale

Thanks: Anton Ievlev
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How Big? (Kalinin et.al., ACS Nano, 2016)
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Existing DR for NHOT - Matricization

• Works only when some of the dimensions are independent
• Matricizing NHOT is non-trivial
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NTF and Piezoresponse Force Spectroscopy

• 3600 
Vectorized 
Spatial 
Locations

• 128 Time Steps
• 16 different 

voltage steps

Kelley, K.P., Li, L., Ren, Y. et al. Tensor factorization for elucidating mechanisms of piezoresponse relaxation via 
dynamic Piezoresponse Force Spectroscopy. npj Comput Mater 6, 113 (2020). 
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FLOPS vs Parameterization – Spatial Data

Pravi Devineni, Vagelis Papalexakis, Ramakrishnan Kannan
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Convolutional Autoencoder
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Thank You



NS&T ML-AI
Big Data    Machine Learning   Artificial Intelligence

Thank you
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