

Big Data Machine Learning Artificial Intelligence

This symposium involves audio/video recording of all presentations, discussions, and comments. The recording for this symposium will be made available to the public. By receiving this notification, your participation consents to recording your interactions with the symposium and public release.

Your audio and video is muted by default

?

Use the "Chat" feature to ask questions. All questions will be addressed at the end of each presentation (time permitting)

••••

Use the "Chat" feature to let us know if you have technical difficulties

For low-quality connections, switch off video and do not use VPN, if possible

A separate audio PIN will be provided when you sign in for the phone-in audio option

Welcome to the

Artificial Intelligence and Machine Learning Symposium 5.0

June 8, 2021

Big Data Machine Learning Artificial Intelligence

Welcome

Ronald Boring, PhD, FHFES

Manager, Human Factors and Reliability Department

INL

Craig Primer, Light Water Reactor Sustainability Nuclear Safety and Regulatory Research Division Idaho National Laboratory

Machine Learning & Artificial Intelligence Symposium 5.0

Tuesday, June 8, 2021

Moving from 2020 to 2021 - Symposium 5.0

- Last year INL sponsored quarterly symposiums on Artificial Intelligence (AI) and Machine Learning (ML) approaches and activities related to science and engineering
 - The "1.0 Symposium" focused on internal-to-INL activities and capabilities
 - Symposium 2.0 we broadened the focus and highlighted activities and capabilities around the nuclear industry and universities
 - Symposium 3.0, we invited researchers provide updates on nuclear-related applications using AI/ML
 - Symposium 4.0, introduced the concept of "Trustworthy" as it relates to AI/ML
- We continue our discussion today on the importance of Trustworthy AI/ML development and hear from researchers about their work in these areas

11:00 (MDT)	Welcome, Introduction, and Agenda	Craig Primer, INL
11:05	Machine Learning Pillars to Avoid Embarrassment for Trustworthy and Explainable ML	Rita Foster, INL Andrea Mack, INL Shaya Wolf, UofWY
11:35	Large-scale Optimization of Boiling Water Reactor Bundles with Hybrid Reinforcement Learning and Evolutionary Intelligence	Majdi Radaideh, MIT
11:45	Robust data-driven sensor placement	Krithika Manohar, UW
11:55	Cyber-Physical State Awareness, Automated Response and Confirmed Resilience	Craig Rieger, INL
12:05	Human-Centered Artificial Intelligence	Ben Shneiderman, UMD
12:35	Designing Explainable Al	Torrey Mortenson, INL
12:45	Explainable Dimensionality Reduction Using Scientific Constraints	Ramakrishnan (Ramki) Kannan, ORNL
12:55	Closing Remarks	Craig Primer, INL

Presenters and **Topics**

Idaho National Laboratory

WWW.INL.GOV

Rita Foster, Andrea Mack, Shaya Wolf *Infrastructure Security Pillars to Avoid Embarrassment for Trustworthy & Explainable ML*

> Trustworthy AI/ML Symposium June 8, 2021

Agenda

- Background
- ML/Graph Pillars
 - Purpose
 - Relevance
 - Data Types
 - Data Sources
 - Data Management and more data
 - Data Validation
 - Explainable
 - Trustworthy

Why it is relevant to ML/AI Future

- Why ML Pillars ?
 - Layers of validated assumptions for purpose, relevance, data and ML concepts
 - Provide improvement, feedback to challenge all concepts
 - Assist in explaining ML concepts to potential sponsors
 - Enable refinement to match sponsor's needs
 - Gain critical partnerships based on problem, data and ML relevance
- Our experience with test corpora concepts enable multi-faceted analysis
 - Benefits of rapid prototyping of new ML/AI methods
 - Actionable ML results from Agile data sets
 - Higher fidelity analysis with ability to challenge assumptions and results

Good research yields more questions enabling future research questions

Machine Lo Infrastruct Historical Jo	earning for Cy ure ourney	ber Protection Critical	
Reverse Engi 2017 - 2021	neered Binarie Structured Th	es nreat	
DOE-CESER Firmware Indicator Translation (FIT) – implemented 2 LDRD methods from RE@Scale 2020 - 2023 Grid Modernization Laboratory Call – Firmware Command	2019 - 2022 DOE-CESER Competitive Laboratory Call Geo Threat Observable (GTO)	Malware 2020 - 2023 Grid Modernization Laboratory Call – Deep Learning Malware (DLM)	

Case Study 1 – Structure Threat - Explainable ML Pillars Structured Threat STIG

Russians in the Grid Example – Bryan Beckman

Machine Learning Explainable & Trustworthy Spectrum

THE ULTIMATE ANSWER TO LIFE, THE UNIVERSE AND EVERYTHING IS: **O** DOUGLAS R.HOFSTADTER **GÖDEL,ESCHER,BACH:** AN ETERNAL GOLDEN BRAID

A METAPHORICAL FUGUE ON MINDS AND MACHINES IN THE SPIRIT OF LEWIS CARROLL

Essential Abilities for Intelligence

- Flexibility Respond to situations Take advantage of fortuitous circumstances;
- Make sense out of ambiguous or contradictory messages;
- Recognize the relative importance of different elements of a situations;
- Find similarities between situations despite differences which may separate;
- Draw distinctions between situations despite similarities which may link;
- Synthesize new concepts by taking old concepts and putting together in new ways;
- Generate novel concepts and ideas

Case Study 1 – Structure Threat - Purpose

ML Pillars Structured Threat GTO will connect missing cyber threat links and provide prediction, mapping to

Purpose situational awareness for impact, threat analysis and ad-hoc scenarios enabling better use of limited cyber defense resources.

Goal and Objectives

Goal: Provide common operational picture for cyber defenders to stage limited resources

Leverage visualization mechanisms for GIS

Define structured threat to GIS layers for visualization

Scope definition ML/AI Appropriateness origin and accounting for uncertainty

Capabilities/Gap Analysis

	0	sh sh	31.0	Actio
	Free	Yes	Yes	Contex Dati
	Free	Yes	Yes	No
AIS Adventification there a	Free	Yes	No	No
	Paid	No	Yes	Unkno
MISP Threat Sharing	Free	Yes	• Ves	Genera Snort, Y etc.
	Free	Yes (Two Way)	Yes	IOC Depend
ۮNVD	Free	Yes	No	ISO
CRISP	Free			

Potential Outcomes

Interactive GIS display of current and evolving threat

Test corpora ...machine learning of similarities to past and predict evolving

Ad-hoc scenario capability...for Machine Leaning threat behavior

...

. . .

Case Study 1 – Structure Threat - Relevance

ML Pillars	Structured Threat
Relevance	STIX

Structured Threat Information Expression

- International Standard Open Source
- OASIS Standard
- Hundreds of Users
- Active Standard being Enriched
- Large use enables technology adoption
- STIX has proven to be Sharable, Actionable and Implementable
- Relevance for Critical Cost Share Partners: Splunk, Forescout, FortiNet, Eclypsium, Asset Owners, and many original equipment manufacturers

Case Study 1 – Structure Threat – Data Type & Sources

ML Pillars	Structured Threat
Data Type	Structured Threat in Graph database
Data Sources	Threat Feeds; Scraped, Enriched

Case Study 1 – Structure Threat – Managed & Validation

Node Analysis Andrea Mack

ML PillarsStructured ThreatData ManagedGraph DatabaseData ValidationNodal Analysis

Graph Databases for Management:

- Edges, Nodes, Properties
- Graph Traversal Simple: vertices/edges, Breath or Deep First Search

Structure - Feature generation using iGraph

- Communities within graphs;
- Degree of the graph;
- Cliques mean/max clique lengths
- Global Transitivity

Deeper context rich narratives

- Descriptions, evidence-based sources

Nodal Analysis for Validation of Assumptions

- Validate Test Corpora
- Validate Data Assumptions
 - Subject Matter Expert Review
- Repeatable Embeddings for ML Graph CNN to Persistent Homology
 - i.e., Feature Vector count validated by simple Graph Queries

Nodal Analysis – Validation of Assumptions

What are the Context of All and Two node graphs?

Validation of Graph Context

Challenging the Value of one node graphs

Nodal Analysis Over 100 Node Graph Analysis

Validation of Graph Context > 100 Nodes

13 static vs 658 Enriched Graphs with more tools, behaviors

asset

attack_pattern

course of action

domain name

campaign

identity

indicator

infrastructure intrusion_set

pv4 addr

ocation

malware

report

tool

observed data

threat actor

vulnerability

x_mitre_matrix

x mitre tactic

x opencti incident

Nodes	TC1: Graphs	TC2: Graphs
1-2	215 (53.7%)	5646 (85.9%)
3-10	134 (33.5%)	131 (1.99%)
11-50	29 (7.25%)	42 (.6%)
51-100	9 (2.25%)	95 (1.45%)
101-max	13 (3.25%)	658 (10.0%)
Total	400	6572

TC2: Graphs with > 100 Nodes

Case Study 1 – Structure Threat - Explainable

ML Pillars	Structured Threat
Explainable	Geo Threat
	Observable

Visualization

- Location of Cyber Attack
 - Kiev, Ukraine December 2016
- Electric Infrastructure Layers
- GIS
- Redrawn impact areas after adhoc scenarios; enhanced threat and prediction

Kiev, Ukraine– Ryan Hruska

Case Study 1 – Structure Threat - Trustworthy

ML Pillars	Structured Threat
Trustworthy	Sources, Notes, Observables & Scoring

Evidence-Based Threat: Sources, Reports, Cyber Observables and Scoring to Trend Threat Value; Provides Feedback

Enrichment Scoring – Bryan Beckman

Case Study 1 – Structure Threat - Trustworthy

ML Pillars	Structured Threat
Trustworthy	Sources, Notes, Observables & Scoring

Process for Trustworthy

- Baseline Test Corpora
- Baseline Embeddings for ML
- Validate Baselines
- Trend Quality Scores
- Accuracy, repeatability, False Positives, False Negatives (F1)
- Feedback for enhancements and improvements
- Ability to Challenge Results

And Above All ...

Curiosity

Attack Surface – Bryce McClurg

Looking Ahead

Continued use of ML Pillars

- Refined by external ML experts, research partners and included in strategy
- Focus concepts for future sponsors and stakeholders
- Relevance and actionable results
- Higher fidelity data understanding with visualizations for explainable basis
- Enabling feedback and ability to challenge concepts for improvement
- Test Corpora
 - Easier scope discussions next iteration tasking
 - Repeatable embeddings with further analysis and validation
 - Two large test corpora Structured Threat and Translated Binaries

Future: critical infrastructure cyber protection issues

Questions?

Idaho National Laboratory

WWW.INL.GOV

Majdi I. Radaideh MIT Nuclear Science and Engineering

Large-scale Optimisation of BWR Bundles with Hybrid Reinforcement Learning and Evolutionary Intelligence

Machine Learning & Artificial Intelligence Symposium 5.0 June 8, 2021

Reinforcement Learning & Evolutionary Computation

Particle Swarm Optimization

Game-playing Al

I am almost there ©

Why AI/ML for Fuel Optimization

- **Expensive** (fuel depletion is included and a bigger assembly is optimized GE14-10x10).
- Combinatorial (dicrete input space)
- **High-dimensional** (~10⁶⁵ possibilities in the space)
- Heavily-constrained (43 constraints)
- **Multi-objective** (maximize burnup, minimize peaking factor)

$$\min_{\vec{x}} f(\vec{x}) = -\left[\frac{1}{3}\sum_{i=1}^{3} B^{z_i} - 10\max(PPF_{0\%}^{z_1}, ..., PPF_{0\%}^{z_3}, PPF_{40\%}^{z_1}, ..., PPF_{40\%}^{z_3}, PPF_{70\%}^{z_1}, ..., PPF_{70\%}^{z_3})\right],$$
(29)

subject to the following constraints

28

$$g_1(\vec{x}) = 16 \le N_{poison}^{z_1} \le 18, \quad g_2(\vec{x}) = 16 \le N_{poison}^{z_2} \le 18, \quad g_3(\vec{x}) = 13 \le N_{poison}^{z_3} \le 16, \tag{30}$$

$$g_4(\vec{x}) = PPF_{0\%}^{z_1} \le 1.45, \quad g_5(\vec{x}) = PPF_{0\%}^{z_2} \le 1.45, \quad g_6(\vec{x}) = PPF_{0\%}^{z_3} \le 1.45,$$
 (31)

$$g_7(\vec{x}) = PPF_{40\%}^{z_1} \le 1.4, \quad g_8(\vec{x}) = PPF_{40\%}^{z_2} \le 1.4, \quad g_9(\vec{x}) = PPF_{40\%}^{z_3} \le 1.4, \tag{32}$$

And many more!

Radaideh, M. I., Forget, B., Shirvan, K. (2021). Large-scale design optimisation of boiling water reactor bundles with neuroevolution. *Annals of Nuclear Energy*, *160*, 108355.

Divide-and-Conquer

- Step 1: Layout matchup
 - *E*, *G*, *N*_{gad}, *GAD* Positioning
- Step 2: PPF (40%) met (each CASMO case is 1.5s)
 - For all axial zones (PSZ, DOM, VAN1, VAN2)
- Step 3: ALL PPF are met (each CASMO case is 8s)
 - For all axial zones (PSZ, DOM, VAN1, VAN2)
 - For 0%, 40%, 70% void
 - For Rodded/Unrodded conditions
- Step 4: deplete the bundle and get k_{cold}/k_{hot} (each CASMO case is 2 min)
 - For all axial zones (PSZ, DOM, VAN1, VAN2)
- Step 5: Search for the best burnup & Lowest PPF

Radaideh, M. I., Forget, B., Shirvan, K. (2021). Large-scale design optimisation of boiling water reactor bundles with neuroevolution. *Annals of Nuclear Energy*, *160*, 108355.

Step 0 (Optional): Single-Zone Radial Optimization (CASMO4)

Radaideh, M. I., Forget, B., Shirvan, K. (2021). Large-scale design optimisation of boiling bundles with neuroevolution. *Annals of Nuclear Energy*, *160*, 108355.

Looking Ahead

- With **NO** human intervention, fully optimized bundle by a **neuroevolution algorithms.**
- Fuel engineers at Exelon are getting reduced design efforts.
- The results are very competitive to the designs used by Exelon/GE.
- The search can be done in 12-24 hrs using a modest computing power of 32 processors!
- When scaled to the full core, expected savings on fuel costs are about 3 million dollars
 - Still a preliminary guess, core optimization is on the road for future work.

3.2 7.0 4.9 4.9 4.9 2.4 3.0 4.9 4.9 4.2 4.9 4.0 7.0 4.4 3.0 3.0 4.9 4.9 4.4 4.9 4.9 4.4 4.9 7.0 3.2 3.2 4.9 4.4 4.9 4.9 W W 3.0 4.9 4.9 W W 4.2 4.2 3.0 4.0 4.4 W W 4.2 4.4 3.2 4.9 4.9 4.9 4.9 4.9 4.4 4.9 4.9 4.0 2.8 4.4 4.9 4.4 4.4 4.4 4.4 4.9 4.4 3. .4 2.4 3.0 3.2 3.2 3.0 3.0 3.2 2.8 2. 2.4 3.0 4.9 4.9 4.4 4.9 4.2 7.0 4.4 3.0 $3.0 \begin{array}{c} 4.9 \\ 8.0 \end{array} \begin{array}{c} 4.9 \\ 8.0 \end{array} \begin{array}{c} 4.4 \\ 8.0 \end{array} \begin{array}{c} 4.9 \\ 8.0 \end{array} \begin{array}{c} 4.9 \\ 4.9 \end{array} \begin{array}{c} 4.9 \\ 4.9 \end{array} \begin{array}{c} 4.9 \\ 4.9 \end{array} \begin{array}{c} 3.1 \\ 7.0 \end{array}$ 4.9 4.9 W W 3.0 4.2 4.9 W W 4.9 4.4 3.2 4.9 4.9 4.9 4.9 4.9 2.8 4.4 7.0 4.4 9.0 4.4 4.9 4.9 4.4 3.0 2.2 3.0 3.2 4.0 4.0 4.4 4.4 4.0 3.0 3.

TIONAL LABORATORY

WWW.INL.GOV

 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7</td

0.7 1 0.7 1 0.7 0.7 1 0.7 1 0.7

T-NAT

VAN2

VAN1

PLE

DOM

PSZ

B-NAT

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

0.7 0.7 0.7 0.7 0.7 W W 0.7 0.7 0.7

0.7 0.7 0.7 0.7 0.7 W W 0.7 0.7 0.7

0.7 0.7 0.7 W W 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 W W 0.7 0.7 0.7 0.7 0.7

 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7
 0.7</td

368.9 cm

353.7 cm

317.9 cm

228.6 cm

213.4 cm

123.3 cm

15.2 cm

0.0 cm

4 2.4 3.0 3.2 3.2 3.0 3.0 3.2 2.8 2

9.2 V 4.4 4.9 4.9 W W 4.9 V 4 3.2 3.6 4.2 4.9 V W W 4.9 6.0 4

0 4.9 4.9 W W V 3.6 4.9 4.0 4

8 V 49 V 44 40 V 49 V

2 3.0 3.2 4.0 4.0 4.4 4.4 4.0 3.0

1 2.4 3.0 3.2 3.2 3.0 3.0 3.2 2.B

14 3.0 8.0 4.9 4.2 4.9 4.0 4.9 4.4 3

3.0 4.9 4.9 4.4 4.9 4.9 4.4 4.9 4.9 3

12 42 49 49 44 W W 49 40

0 4.9 4.9 W W 4.2 4.2 4.9 4.4 4

3.2 4.9 4.9 4.9 4.9 4.9 4.4 4.9 4.9 4

2.8 4.4 4.9 4.4 8.0 4.4 4.4 4.9 4.4 3

22 3.0 3.2 4.0 4.0 4.4 4.4 4.0 3.0 3

4 2.4 3.0 3.2 3.2 3.0 3.0 3.0 3.2 2.8 2

2 49 44 49 49 W W 49 44 4

12 4.4 4.9 4.9 4.4 W W 4.9 4.9 4

4.9 4.9 W W 4.4 4.9 4.9 4.4 4

0 4.2 4.9 W W 4.9 4.4 4.9 4

2 49 49 49 49 49 49 44 49 49 4

28 4.4 49 4.4 49 4.4 4.9 4.9 4.4 3

2 3.0 3.2 4.0 4.0 4.4 4.4 4.0 3.0 3

4.0 4.4 W W 4.2 4.4 4.4 4

3.2 4.9 4.4 4.9 4.9 W W 47

4.9 4.9 4.9

V 4.

V 3.6 4.9 V 4.9 V

4.4 4.2 4.9 4.0 4.9 4.9

4.9 4.4 4.9 4.9

Robust Data-Driven Sensor Placement

Krithika Manohar University of Washington

June 8, 2021

Collaborators Steven L. Brunton, UW J. Nathan Kutz, UW

Scalable + optimal sensor placement

- Measurements crucial for prediction and control of complex systems
 - Expensive to deploy
 - Spatial constraints on placement
 - Governing models unavailable
- Our approach: Robust, data-driven sensor placement
 - Extract low-dimensional structure from data using ML
 - Sparse sensing to determine important locations in state space

kmanohar@uw.edu

Scalable + optimal sensor placement

- Measurements crucial for prediction and control of complex systems
 - Expensive to deploy
 - Spatial constraints on placement
 - Governing models unavailable
- Our approach: Robust, data-driven sensor placement
 - Extract low-dimensional structure from data using ML
 - Sparse sensing to determine important locations in state space Sensors for classification, [Brunton et al]

Overview

UNIVERSITY of WASHINGTON

Sparse sensing for reconstruction

- Reconstruct x from measurements y in a basis of descriptive features
 - Recover coefficients **a** of **x** in basis (gappy POD, Everson & Sirovich 1995)
- Design sensing matrix C to minimize error covariance of estimate

$$egin{aligned} \mathbf{x} &\approx \mathbf{\Phi}_r \mathbf{a} \ \mathbf{y} &= \mathbf{C} \mathbf{x} + oldsymbol{\eta} \ &pprox \mathbf{C} \mathbf{\Phi}_r \mathbf{a} + oldsymbol{\eta} \end{aligned}$$

Sparse sensing for reconstruction

- Reconstruct x from measurements y in a basis of descriptive features
 - Recover coefficients **a** of **x** in basis (gappy POD, Everson & Sirovich 1995)
- Design sensing matrix **C** to minimize error covariance of estimate $Var[\mathbf{a} - \hat{\mathbf{a}}] = \sigma^2 [(\mathbf{C} \mathbf{\Phi}_r)^T \mathbf{C} \mathbf{\Phi}_r]^{-1}$

$$\max_{\mathbf{C}\in\mathbb{R}^{q\times n}}\det(\mathbf{C}\boldsymbol{\Phi}_r)^T\mathbf{C}\boldsymbol{\Phi}_r$$

subject to point sensors ${\bf C}$

Brute-force search is NP-hard, scales combinatorially with N

у С хΦ \mathbf{a} X **Recovered signal** $\hat{\mathbf{a}} = (\mathbf{C} \mathbf{\Phi}_r)^{\dagger} \mathbf{y}$ $\hat{\mathbf{x}} = \mathbf{\Phi}_r (\mathbf{C} \mathbf{\Phi}_r)^{\dagger} \mathbf{y}$

Sparse sensing via QR pivoting

- Factor basis into orthonormal **Q**, upper-triangular **R**, and row permutation **C**
 - Determinant objective = product of diagonal entries in R
 - Use pivoting to introduce diagonally dominant structure
 - Pivot indices correspond to optimal sensor locations (interpolation points in basis)
 - Origin: empirical interpolation methods for model reduction Drmac & Gugercin, SIAM, 2016

Robust reconstruction

• Reconstruction with minimal number of optimal sensors (compared to random)

QR

200 out of 44219 points

kmanohar@uw.edu

With & Without spatial constraints [Clark, Askham, Brunton & Kutz 2019]

Robustness

- Interpretable each sensor corresponds to a principal component (POD mode)
- Feature basis can be adapted to downstream task
 - POD modes ordered by energy content
 - Robust PCA extracts outliers in data
 - Dynamic mode decomposition into spatial modes and frequencies
 - Balanced POD modes ordered by joint controllability and observability
- Adapt model to changing/failing sensors

POD/PCA $\mathbf{X} = \mathbf{\Phi} \mathbf{\Sigma} \mathbf{V}^T$

Robust PCA

 $\label{eq:linear_line$

 $\mathbf{DMD} \\ \mathbf{x}(t) = \mathbf{\Psi} \operatorname{diag}(\exp(\boldsymbol{\omega} t)) \mathbf{a}$

Joint sensor & actuator placement

- Optimal sensors and actuations for control
 - Leverage observable/controllable features
 - QR adapted method nearly optimal (bottom right) for linearized Ginzburg–Landau discretized model

kmanohar@uw.edu

UNIVERSITY of WASHINGTON

Robust sensors: predictive shimming

Manohar, et al, J. Manufacturing Systems, 2018.

- i. Manohar, Brunton, Kutz & Brunton, "Data-Driven Sparse Sensor Placement for Reconstruction," *IEEE Control Systems*, 38(3):63-86, 2018.
- ii. Manohar, Kaiser, Brunton & Kutz, "Optimized sampling of Multiscale Dynamics," *Multiscale Modeling & Simulation*, 17(1):117-136., 2019.
- iii. Manohar, Hogan, Buttrick, Banerjee, Kutz & Brunton, "Predicting shim gaps using machine learning and sparse sensing," *J. Manuf. Sys.*, 2018. <u>doi.org/10.1016/j.jmsy.2018.01.011</u>
- iv. Manohar, Kutz & Brunton, "Optimal Sensor and Actuator Selection using Balanced Model Reduction", *To appear in IEEE Transactions on Automatic Control,* 2021.

Craig Rieger, PhD, PE

Critical Infrastructure Security and Resilience Cyber-Physical State Awareness, Automated Response and Confirmed Resilience

Machine Learning & Artificial Intelligence Symposium 5.0 June 8, 2021

Next Generation Control Systems: From Reliable to Resilient

"Resilience" is the capacity of a control system to maintain state awareness and an accepted level of operational normalcy in response to disturbances, including threats of an unexpected and malicious nature. (2009)

Resilient Control Systems Evaluation

Physical Disturbances

- Time Latency Affecting Stability
- Data Integrity Affecting Stability
- Cyber Disturbances
 - Time Latency
 - Data Confidentiality, Integrity and Availability

Cognitive Disturbances

- Time Latency in Response
- Data Digression from Desired Response
- Responder
 - Resources
 - Coordination

Distributed Infrastructure Cyber-Physical State Awareness

Distributed Physical State-awareness

 Capability for optimally integrating, monitoring, and controlling the distributed energy systems to prioritize the emergency response to critical infrastructure despite uncertainties.

Distributed Cyber State-awareness

 Capability for detecting and evaluating cyber threats to allow threat accommodation and reconfiguration of the proposed resilient system against attacks.

Cyber-Physical Common Operating Visualization

- Integrated Physical and Cyber State Awareness into a Visualization Engine
 - The visible aspect of this solution is the display interfaces on devices that present information to humans to make more efficient and effective emergency response

Anomaly Detection and Automated Response& Recovery

Cyber-Physical Detection and Analysis of Anomalies

- Ingestion of cyber-physical alerts
- Tradeoff space analysis to validate mitigation benefit and physical impacts that may result
- Role based actions at the human machine interface

Automated Response and Moving Target Defense

- Software defined network response actions to redirect or limit traffic for analysis
- Moving target defenses to deceive actor

Transformative Research and Deployable Solutions for Inherent Infrastructure Resilience

IDAHO NATIONAL LABORATORY

Annual Symposium http://www.resilienceweek.com

Join us for the Resilience Week symposium to discuss how private and public partners can work together to ensure a secure and reliable flow of energy across the nation.

- Topical/Track Areas
 - Cognitive Systems
 - Communications Systems
 - Control Systems
 - Cyber Systems
 - Critical Infrastructure
 - Communities
 - Industry
- Participants
 - DOD/DOE National Labs
 - Cyber-Control-Energy Industries
 - Universities

Plenaries for 2020

- Jamey Sample, VP CSO (Xcel Energy)
- Kimberly Denbow, Managing Director, Security & Operations (American Gas Association)
- Laura Schepis, Sr Dir, National Security (Edison Electric Institute)
- David Solan, Deputy Assistant Secretary for Renewable Power (EERE)
- Michael Pesin, Deputy Assistant Secretary for Advanced Grid Research and Development (OE)
- Qinghua Li, Associate Professor, Department of Computer Science and Computer Engineering (University of Arkansas)
- Mikhail Falkovich, Director, Information Security (Consolidated Edison Company of New York, Inc.)
- Niyo Little Thunder Pearson, Sr., CISSP, CCSP, Supervisor, Cybersecurity/Cyber Operations (ONE Gas)
- Edward Chiu, Cybersecurity Strategist (Chevron Corp.)
- Chick Macal (Argonne National Laboratory)
- Serena Reynolds, National Risk Management Center (NRMC), Cybersecurity and Infrastructure Security Agency (CISA)
- Amanda Toman, Director of 5G Initiatives (Office of the Under Secretary of Defense)
- Maria Dillard, Acting Director of Disaster and Failure Studies (Engineering Laboratory) (National Institute of Standards and Technology)

IDAHO NATIONAL LABORATORY

WWW.INL.GOV

Idaho National Lab ML-AI Trustworthiness Symposium, June 8, 2021

Human-Centered AI: Reliable, Safe & Trustworthy

Ben Shneiderman @benbendc

Founding Director (1983-2000), Human-Computer Interaction Lab Professor, Department of Computer Science

Member, National Academy of Engineering

Photo: BK Adams

Interdisciplinary research community

- Computer Science & Info Studies
- Psych, Socio, Educ, Jour & MITH

hcil.umd.edu vimeo.com/72440805

Designing the User Interface

Design Theories

Direct manipulation Menus, speech, search Social Media Information Visualization

Sixth Edition: 2016

Web links

The University of Maryland, College Park (often referred to as the University of Maryland, Maryland, UM, UMD, UMCP, or College Park) is a public research university^[10] located in the city of College Park in Prince George's County, Maryland, approximately 4 miles (6.4 km) from the northeast border of Washington, D.C. Founded in 1856, the university is the flagship institution of the University System of Maryland. With a fall 2010 enrollment of more than 37,000 students, over 100 undergraduate majors, and 120 graduate programs,

Tiny touchscreen keyboards

Photo tagging

C	1 2 - 6	······································	 Senat 	te_Raw_tuto	rial - Micros	soft Excel no	n-comme	rcial	Table Tools		- 5	×	
	Home	Insert	Page Layout	Formut	as Data	Review	View	NodeXL	Design		😡 – 🕫	×	
Star Graph Type: Undirected Import - Import - <td>lp * 📑 Me</td> <td>rge Duplic</td> <td>ate Edges</td> <td>Copy Vertex Names</td> <td>Calculate Graph Metrics *</td> <td>Create Clusters</td> <td></td>					lp * 📑 Me	rge Duplic	ate Edges	Copy Vertex Names	Calculate Graph Metrics *	Create Clusters			
Graph						Edges		Vertices	Analysis				
			Social Pro-			10110	eager		a standa			-	
9	Security Wa	ming Autom	stic update of	links has be	en disabled	Options						~	
	H1	- (fx	Add You	r Own Colur	mas Here						*	
	A	В	с	D	E	F	G	Docum	ent Actions		-	×	
1	Vertex 1	Vertex 2	Color 💌	Width -	Opacity 💌	Visibility 💌	ID - Ac	and the second sec					
2	Akaka	Alexander	Light Gray		1.7	0	2	LI R	ead Workbook 🛛 🛃 Lay Out Ag	ain 🔹 🐯 Layout Type 🔹 😭 Dy	namic Filters	-	
3	Akaka	Allard	Light Gray		1.0	0	з		Johofe Pinte Stakage	ical			
4	Akaka	Baucus	Light Gray		9.9	1	4		Chambless Gragg	a second			
5	Akaka	Bayh	Light Gray		9.7	1	5		Stevene Strengt Bond	Crape			
6	Akaka	Bennett	Light Gray		2.0	0	6		Coburn Ensign Shelby	McCain			
7	Akaka	Biden	Light Gray		10.0	1	7	Bu	nning Bennett				
8	Akaka	Bingaman	Light Gray		10.0	1	8	Ener	azoley Greg				
9	Akaka	Bond	Light Gray		1.6	0	9	MeCo	mpell Murke	pwski			
10	Akaka	Boxer	Light Gray		10.0	1	10	Hagel	Roberts				
11	Akaka	Brown	Light Gray		10.0	1	11	Veter	Alexander Colem	en Sporter	Managerian		
12	Akaka	Brownback	Light Gray		1.0	0	12	Comy	n Brownback		Cantwell		
13	Akaka	Bunning	Light Gray		1.0	0	13	Allerd	Coohran South	Collins	Cardin Card	per	
14	Akaka	Burr	Light Gray		1.0	0	14	- Chancelle	archawertin Sessions		Nelson (NE) Leany	en	
15	Akaka	Byrd	Light Gray		10.0	1	15	1.1.1	A MARKET AND A MARKET	Snowe Salaza	Wurten Milastilli	66	
16	Akaka	Cantwell	Light Gray		10.0	1	16			Ph	rorConrad Nelson (Fib)	2	
17	Akaka	Cardin	Light Gray		10.0	1	17			Tester	Murray Ba		
18	Akaka	Carper	Light Gray		10.0	1	18			Dorgen Ba	uous Linopin Akaka Re		
19	Akaka	Casey	Light Gray		10.0	1	19			Robuc	har Kennedy Feing	old	
20	Akaka	Chambliss	Light Gray		1.0	0	20			Dyra .	Bover Leve		
21	Akaka	Clinton	Light Gray		10.0	1	21			Kohl Kerry	Whitehouse Steben	ow	
22	Akaka	Coburn	Light Gray		1.0	0	22			Brown Di	Bingaman Landrieu		
23	Akaka	Cochran	Light Gray		1.7	0	23	-		Harlin Re	MoCasill Lautenbe	erg	
14	Eda	es Vertices	Imapes	Clusters	10	0		-		41	Coanta Schumer		
Ready													
										And the second second			

NodeXL

EventFlow

What is Human-Centered AI?

What is Human-Centered AI?

Amplify, Augment, Empower & Enhance People

Human Values Rights, Justice & Dignity

Human Values

Rights, Justice & Dignity

Individual Goals

Self-efficacy, Creativity, Responsibility & Social Connections

Human Values

Rights, Justice & Dignity

Individual Goals

Self-efficacy, Creativity, Responsibility & Social Connections

Design Aspirations

Reliable, Safe & Trustworthy Team, Organization, Industry & Government

Oxford University Press (Early 2022) https://hcil.umd.edu/human-centered-ai/

Supertools

Digital Camera Controls

Navigation Choices

Texting Autocompletion

1 2hr 57

Adelph

(410)

50

UTHEAST.

ASHINGTON

...

Ťţ,

1 26 n

oZone Aut

25 min

Capitol

1

Hoights

Parts

26 min

Preview >>

0

Cancel

Spelling correction

Active Appliances

Coffee maker, Rice cooker, Blender

Cuisinart Grind & Brew Coffee Maker

Panasonic Rice Cooker

Dishwasher, Clothes Washer/Dryer

General Electric Dryer

Implanted Cardiac Pacemakers

NASA Mars Rovers are Tele-Operated

Da Vinci Tele-Operated Surgery

"Robots don't perform surgery. Your surgeon performs surgery with da Vinci by using instruments that he or she guides via a console."

https://www.davincisurgery.com/

Bloomberg Terminal

Hospital Control Center

Counter Terrorism Center

Governance Structures for Human-Centered Al

ACM THS (Oct 2020) https://dl.acm.org/doi/10.1145/3419764

Governance Structures for Human-Centered Al

ACM THS (Oct 2020) https://dl.acm.org/doi/10.1145/3419764

Reliable systems based on software engineering practices

- 1) Audit trails and analysis tools
- 2) Software engineering workflows
- 3) Verification & validation testing
- 4) Bias testing to improve fairness
- 5) Explainable user interfaces

Reliable systems based on software engineering practices

1) Audit trails and analysis tools

- 2) Software engineering workflows
- 3) Verification & validation testing
- 4) Bias testing to improve fairness

5) Explainable user interfaces

Reliable Systems

Software engineering practices for a TEAM

1) Audit trails and analysis tools

"Flight Data Recorder for Every Robot"

- Retrospective analysis of failures
 - Understanding near misses
- Analysis to support preventive maintenance

Reliable Systems

Software engineering practices for a TEAM

5) Explainable user interfaces

- Retrospective explanations (local & global)

New Goal: **Prevent** confusion and surprise Prospective user interfaces

- Interactive, visual, exploratory

Mortgage Loan Explanations

Post-hoc Report

Enter amounts to request mortgage:		
Mortgage amount requested	375000	
Household monthly income	7000	
Liquid assets	48000	
	Submit	

Mortgage Loan Explanations

Post-hoc Report

Enter amounts to request mortgage:		
Mortgage amount requested	375000	
Household monthly income	7000	
Liquid assets	48000	
	Submit	

Enter amounts to request mortgage:		
Mortgage amount requested	375000	
Household monthly income	7000	
Liquid assets	48000	
	Submit	
We're sorry, your mortgage loan was not approved. You might be approved if you reduce the Mortgage amount requested, increase your Household monthly income, or increase your Liquid		
assets.	Done	

Mortgage Loan Explanations

Prospective User Interface

Recommenders: Whichbook.net

Recommender Control Panels

Create Your Better Life Index

Rate the topics according to their importance to you:

		- +	
	Housing		
Ø	Income		
	Jobs		
	Community		
0	Education		
0	Environment		
	Civic Engagement		
0	Health)
0	Life Satisfaction		
Ż	Safety		
410	Work-Life Balance		

Human-Centered AI

Oxford University Press (Early 2022) https://hcil.umd.edu/human-centered-ai/

Governance Structures for Human-Centered Al

ACM THS (Oct 2020) https://dl.acm.org/doi/10.1145/3419764

Human-Centered Artificial Intelligence: Reliable, safe & trustworthy, *International Journal of Human-Computer Interaction 36*, 6 (March 2020). https://doi.org/10.1080/10447318.2020.1741118

Design lessons from AI's two grand goals: Human emulation and useful applications, *IEEE Transactions on Technology & Society 1*, 2 (June 2020). https://ieeexplore.ieee.org/document/9088114

Bridging the gap between ethics and practice: Guidelines for reliable, safe, and trustworthy Human-Centered AI systems, *ACM Trans. on Interactive Intelligent Systems 10,* 4 (Oct 2020). https://dl.acm.org/doi/10.1145/3419764

Human-Centered Artificial Intelligence: Three fresh ideas, AIS Trans. on Human-Computer Interaction 12, 3 (Oct 2020). https://aisel.aisnet.org/thci/vol12/iss3/1/

Human-Centered AI, NAS ISSUES 37, 2 (Winter 2021). https://issues.org/human-centered-ai/

Summary & resources: https://hcil.umd.edu/human-centered-ai/

The Future is Human-Centered

Google Group

https://groups.google.com/g/human-centered-ai

Twitter Account

@HumanCenteredAI

Website

https://hcai.site

The Future is Human-Centered

Torrey Mortenson, INL

June 8, 2021

Designing Explainable Al

Why do we need to design explainable ML/AI?

- Because of its application to things that matter.
 - Critical infrastructure instead of cereal selection
- ML/AI is inscrutable at scale
 - We don't really understand in a fundamental way how these algorithms work. (Mickens, 2018)
- Stochasticity isn't a good explanation, e.g. gradient descent

Dr. James Mickens, 2018 Usenix Security Keynote. "Q: Why Do Keynote Speakers Keep Suggesting That Improving Security Is Possible? A: Because Keynote Speakers Make Bad Life Decisions and Are Poor Role Models"

IDAHO NATIONAL LABORATORY

Designing for inscrutability – Role of Human Centered design

Human Centered Design from day one

- Involvement of human factors is critical
 - Model implications
 - Measure implications
 - Every aspect of the model needs to be explainable.
 - Impossible to predict what may need to be explained.
- Why human factors?

-AI/ML is often an inscrutable black box, do you know what else is an inscrutable black box?

Dave!

 Your HF colleagues have
Any resemblance to any their career understanding and designing for Daves

- Designing for inscrutability is human factors at its core
- Late or no involvement of HF will lead to an AI/ML algorithm that is not transparent, explainable, or trustworthy and therefore unfit for use in critical human infrastructure

Predictive maintenance project

• Predicting the health of a circulating water pump

- XAI/HCAI as communication
- What if we could only talk to the model?

"How do you know?"

"What is specifically wrong?"

"How 'unhealthy' – how bad is it doc?"

Health of Pump

```
Unhealthy
```

"Which sensors are you seeing?"

"What should we do?"

"Are you sure?"

Can the model answer these? Clearly, precisely, and verifiably?

IDAHO NATIONAL LABORATORY

Predictive maintenance project (cont.)

- HF researchers worked closely with the model development team to shape the specific user questions that the model needed to support
- Your ultimate visualization and display has to support the aspects of explainability
- By working with modelers, we were able to explore different methods of interpretability like SHAP, feature interaction, and feature importance.
- Currently in the process of testing prototype visualization with users and will have feedback on adjustments to the model moving forward

Designing for trust, and failure

- AI/ML algorithms will fail and will fall under scrutiny
- Consider how to explain the mod
 - Regulators
 - Policy makers
 - The courts
 - Operators
 - Lay people
 - Communities
- When it fails, what does it do? H

IDAHO NATIONAL LABORATORY

WWW.INL.GOV

Explainable Dimensionality Reduction Using Scientific Constraints

Ramakrishnan Kannan Group Lead, Discrete Algorithms https://ramkikannan.github.io https://github.com/ramkikannan https://ramkikannan.github.io/planc-api

ORNL is managed by UT-Battelle LLC for the US Department of Energy

Acknowledgements

This manuscript has been co-authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. This project was partially funded by the Laboratory Director's Research and Development fund. This research used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Also, partial funding for this work was provided by AFOSR Grant FA9550-13-1-0100, National Science Foundation (NSF) grants IIS-1348152, ACI-1338745, ACI-1642410, and ACI-1642385, Defense Advanced Research Projects Agency (DARPA) XDATA program grant FA8750-12-2-0309. We also thank NSF for the travel grant to present this work in the conference through the grant CCF-1552229.

We also thank NSF for the travel grant to present this work in the conference through the grant CCF-1552229. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government retains a non-exclusive public access to these results of federally sponsored research in accordance with the DOE Public Access Plan http://energy.gov/downloads/doepublic-access-plan. Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the USDOE, NERSC, AFOSR, NSF or DARPA.

Thanks

- ORNL Seung-Hwan Lim, Arvind Ramanathan, Maxim Ziatdinov, Rama Vasudevan, Anton levlev, Sergei Kalinin, Stephen Jesse, Alex Belianinov, Rangan Sukumar, Mike Matheson, Chris Symmons, Miaofang Chi, David Hughes, Suhas Somnath, Debsindhu Bhoumik, Nouamane Laanait, Dasha Hermannova, Robert Patton, Thomas E Potok, Hao Lu, Piyush Sao, Drew Schmidt, Kuldeep Kurte, Shamimul Hasan, Seung-Hwan Lim
- External Prof. Haesun Park (GATech), Prof. Grey Ballard(Wake Forest), Sheikh Ghafoor (TNTech), Ali R Bhatt(VATech), Ranga Raju Vatsavai(NCSU), Barry Drake(GTRI), Mariya Isteva(VUB), Karthik Subbian (UMN), Vagelis Papalexakis(UCR)
- Students Srinivas Eswar (GATech), Koby Hayashi(Wake Forest), Jeff Graves (TNTech), Rina Singh(TNTech), Mosharraf Hossain (TNTech), Luna Xu (VATech), Sekeong Hong (NCSU), Euna Kim(GATech), Seema Chouhan(UMASS), Mark Heimann(Umich), Pravallika Devineni (UCR), Thomas Blum(UCI)

107

Unmixing

- Understanding terrestrial information in an unknown place from satellite images
- Identifying presence of hidden unknown/foreign bodies in a scanned image - Eg., contamination in food articles, camouflaged explosives etc.
- Biological application spectral karyotyping, immunofluorescence, live-cell imaging, drug discovery, and tissue pathology – Eg., Unmixing on Spectral imaging of the stained tissues using multiple dyes.
- Physics and Material Sciences Mapping properties to end-members. Comparing different materials

108

Matrix Factorization (MF)

109 **CAK RIDGE** LEADERSHIP COMPUTING FACILITY
Example 1 : NMF vs. PCA

Both PCA and NMF are insufficient They do not consider the neighbourhood information To consider this information, we use regularization

TOF SIMS Data – Collaboration w/ Anton

Atomic Motion of MoSe2 – (https://smcdatachallenge.ornl.gov)

Zhou, T. and D. Tao (2011). <u>Godec:</u> <u>Randomized low-rank & sparse matrix</u> <u>decomposition in noisy case</u>. International conference on machine learning, Omnipress. $\min_{L,S} \left| |A - L - S| \right|_F^2$

subject to $rank(L) \le r$; $card(S) \le k$

Symmetric NMF

COAK RIDGE

National Laboratory FACILITY

112

$\min_{\mathbf{H}>0} \|\mathbf{A} - \mathbf{H}\mathbf{H}^{\mathsf{T}}\|_{F}^{2}.$

- ANLS Variant $\min_{\{\mathbf{W},\mathbf{H}\}\geq 0} \|\mathbf{A} \mathbf{W}\mathbf{H}^{\mathsf{T}}\|_{F}^{2} + \gamma \|\mathbf{W} \mathbf{H}\|_{F}^{2}$. $\min_{\mathbf{H}\geq 0} \|\begin{bmatrix}\mathbf{W}\\\sqrt{\gamma}\mathbf{I}_{k}\end{bmatrix} \mathbf{H}^{\mathsf{T}} \begin{bmatrix}\mathbf{A}\\\sqrt{\gamma}\mathbf{W}^{\mathsf{T}}\end{bmatrix}\|_{F}^{2}$.
- Gauss Newton based Conjugate Gradient
 - Computing Gradient
 - Applying Gramian of Jacobian

Algorithm 2 $[W,H] = SymGNCG(A,k,s_{max})$ **Require:** $\mathbf{A} \in \mathbb{R}^{n \times n}_+$ is distributed across a $\sqrt{p} \times \sqrt{p}$ grid of processors, k > 0 is rank of approximation, p divides n **Require:** Local matrices: $\mathbf{H}_{ij}, \mathbf{X}_{ij}, \mathbf{P}_{ij}, \mathbf{R}_{ij}, \mathbf{Y}_{ij}$ are $n/p \times k$ 1: Proc p_{ij} initializes \mathbf{H}_{ij} 2: while stopping criteria not satisfied do 3: $\mathbf{X} = \mathbf{0}$ % Initialize $\mathbf{x}_0 = \mathbf{0}$ $\mathbf{R} = \text{Compute-Gradient}(\mathbf{A}, \mathbf{H})$ $\% \mathbf{r} = \mathbf{b} - \mathbf{J}^{\mathsf{T}} \mathbf{J} \mathbf{x}_0$ 4: $p_{ij} \text{ sets } \mathbf{P}_{ij} = \mathbf{R}_{ij} \qquad \% \mathbf{p}$ $p_{ij} \text{ computes } \epsilon_{ij}^{\text{old}} = \langle \mathbf{R}_{ij}, \mathbf{R}_{ij} \rangle$ $\text{compute } \epsilon^{\text{old}} = \sum_{i,j} \epsilon_{ij}^{\text{old}} \text{ using all-reduce across all procs}$ $\% \mathbf{p} = \mathbf{r}$ 5: 6: 7: for s=1 to s_{max} do 8: $\% \mathbf{y} = \mathbf{J}^{\mathsf{T}} \mathbf{J} \mathbf{p}$ $\mathbf{Y} = \mathbf{Apply} \cdot \mathbf{Gramian}(\mathbf{H}, \mathbf{P})$ 9: p_{ij} computes $\alpha_{ij} = \epsilon^{\text{old}} / \langle \mathbf{P}_{ij}, \mathbf{Y}_{ij} \rangle$ compute $\alpha = \sum_{i,j} \alpha_{ij}$ using all-reduce across all procs 10: 11: p_{ij} computes $\mathbf{X}_{ij} = \mathbf{X}_{ij} + \alpha \mathbf{P}_{ij}$ $\% \mathbf{x} = \mathbf{x} + \alpha \mathbf{p}$ 12: p_{ij} computes $\mathbf{R}_{ij} = \mathbf{R}_{ij} - \alpha \mathbf{Y}_{ij}$ 13: $\% \mathbf{r} = \mathbf{r} - \alpha \mathbf{v}$ p_{ij} computes $\epsilon_{ij} = \langle \mathbf{R}_{ij}, \mathbf{R}_{ij} \rangle$ 14: compute $\epsilon = \sum_{i,j} \epsilon_{ij}$ using all-reduce across all procs 15: $p_{ij} \text{ computes } \mathbf{P}_{ij} = \mathbf{R}_{ij} + (\epsilon/\epsilon^{\text{old}})\mathbf{P}_{ij}$ $\epsilon^{\text{old}} = \epsilon$ $\% \mathbf{p} = \mathbf{r} + \beta \mathbf{p}$ 16: 17: 18: end for p_{ij} computes $\mathbf{H}_{ij} = [\mathbf{H}_{ij} - \mathbf{X}_{ij}]_+ \%$ projected GN step 19: 20: end while **Ensure:** $\mathbf{H} \approx \operatorname{argmin} \|\mathbf{A} - \tilde{\mathbf{H}}\tilde{\mathbf{H}}^{\mathsf{T}}\|_{F}^{2}$ $\bar{\tilde{\mathbf{H}}} \ge 0$ **Ensure:** H is $n \times k$ row-wise distributed across processors

(a) Original Image

(c) Segmented Image

(b) Boundary Map Fig. 13. Boundary detection and image segmentation using features generated by SymNMF.

Algorithm	flops	words	messages
ANLS	$rac{4n^2k}{p} + O(rac{nk^2}{p})$	$O(rac{nk}{\sqrt{p}}\!+\!k^2)$	$O(\mathrm{log} p)$
GNCG	$\frac{2n^2k}{p} + O(\frac{s_{\max}nk^2}{p})$	$O(\frac{nk}{\sqrt{p}} + s_{\max}k^2)$	$O(s_{\max} \mathrm{log} p)$

S. Eswar, K. Hayashi, G. Ballard, R. Kannan, H. Park and R. Vuduc: Distributed-Memory Parallel Symmetric Non-negative Matrix Factorization. Accepted at SC'20

Hierarchical Non-negative Matrix Factorization

Figure 2: Hierarchy node classification

L. Manning, G. Ballard, R. Kannan, H. Park: Parallel Hierarchical Clustering using Rank-Two Nonnegative Matrix Factorization. Communicated to HiPC'2020

Actional Laboratory

113

Multifrontal NMF (MFNMF)

COAK RIDGE LEADERSHIP COMPUTING FACILITY

114

<u>Piyush Sao</u>, Ramakrishnan Kannan: **Multifrontal Non-negative Matrix Factorization.** <u>PPAM</u> <u>(1) 2019</u>: 543-554

Dense Tensor Factorization

Dimensionality Reduction in Scientific Data

• Multimodal characterization of materials – comprehensive characterization from chemical composition to functional properties on the nanoscale

COAK RIDGE

116

Thanks: Anton levlev

How Big? (Kalinin et.al., ACS Nano, 2016)

technique	dimensionality	target data set ^a	target data size ^c
band excitation piezoresponse force microscopy (BE-PFM)	3D, space and ω	$(256 \times 256) \times 64$	32 MB
switching spectroscopy PFM (SS-PFM)	3D, space and voltage	$(64 \times 64) \times 128$	4 MB
time relaxation PFM (TR-PFM)	3D, space and time	$(64 \times 64) \times 128$	4 MB
AC sweeps	4D, space, <i>w</i> , voltage	$(64 \times 64) \times 64 \times 256$	512 MB
BE polarization switching (BEPS)	4D, space, <i>w</i> , voltage	$(64 \times 64) \times 64 \times 128$	256 MB
BE thermal	4D, space, ω , temperature	$(64 \times 64) \times 64 \times 256$	512 MB
time relaxation BE (TR-BE)	4D, space, <i>w</i> , time	$(64 \times 64) \times 64 \times 64$	64 MB
FORC BEPS	5D, space, ω , voltage, voltage	$(64 \times 64) \times 64 \times 64 \times 16$	2 GB
time relaxation on sweep, BE	5D, space, ω , voltage, time	$(64 \times 64) \times 64 \times 64 \times 64$	16 GB
FORC time BE	6D, space, ω, voltage, voltage, time	$\begin{array}{c} (64 \times 64) \times 64 \times 64 \times 16 \times \\ 64 \end{array}$	128 GB
FORC IV BEPS	5D, space, <i>w</i> , voltage, cycle	$(64 \times 64) \times 64 \times 64 \times 16$	4 GB
FORC IV and FORC IV-Z	4D, space, voltage, cycle	$(64 \times 64) \times 64 \times 20$	200 MB
time-resolved Kelvin probe force microscopy (KPFM)	3D, space, time	$(60 \times 20) \times 1 \times 10^6$	8 MB
open loop (OL) BE KPFM	4D, space, <i>w</i> , voltage	$(256 \times 256) \times 32 \times 16$	256 MB
general-mode PFM (G-PFM)	3D, space and voltage	$(256 \times 256) \times 1.6 \times 10^4$	4 GB
G-mode voltage spectroscopy (G-VS)	ND, space, voltage ^d	$(256 \times 256) \times 1.6 \times 10^{6}$	400 GB

Existing DR for NHOT - Matricization

- Works only when some of the dimensions are independent Matricizing NHOT is non-trivial ٠
- ٠

NTF and Piezoresponse Force Spectroscopy

Fig. 4 NTF analysis on dynamic piezoresponse force microscopy data. Components 1–4 are shown in **a–d**, respectively, with corresponding relaxation behavior (time tensor factor, red) and voltage dependence (voltage tensor factor, green) plots. Large color maps correspond to normalized abundance maps for individual components.

Kelley, K.P., Li, L., Ren, Y. *et al.* Tensor factorization for elucidating mechanisms of piezoresponse relaxation via dynamic Piezoresponse Force Spectroscopy. *npj Comput Mater* **6**, 113 (2020).

- 3600
 Vectorized
 Spatial
 Locations
- 128 Time Steps
- 16 different voltage steps

CAK RIDGE National Laboratory

119

FLOPS vs Parameterization – Spatial Data

Pravi Devineni, Vagelis Papalexakis, Ramakrishnan Kannan

Convolutional Autoencoder

CAK RIDGE National Laboratory

121

Thank You

Thank you

IDAHO NATIONAL LABORATORY