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The First Three Symposia

• April 2020: Artificial Intelligence (AI) and Machine Learning (ML) 
Symposium 1.0

− Focused on internal-to-INL activities and capabilities
− Was such a success, that we extended symposium beyond INL

• July 2020: AI/ML Symposium 2.0 
− Engaged industry and universities
− It was noted that AI/ML will be a key technology moving forward as we 

continue our R&D
• October 2020: AI/ML Symposium 3.0

− Focusing on nuclear-related applications using AI/ML
− Revealed a rich collection of AI applications already underway to help with 

tasks like monitoring, risk prediction, and maintenance
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The Current Symposium

• Symposium 4.0 narrows the topic a bit: “Trustworthy and Explainable AI”
− The success of AI/ML depends on:

• AI doing what it’s supposed to do (Reliable)
− A lot of the evolution and demonstrations of AI covered in earlier 

symposia
• Us trusting that AI is doing what it’s supposed to do (Trustworthy)

− A system that does something we don’t expect is not likely invited to 
do it a second time

− Many of the applications of AI we are discussing are safety critical with 
no margin for AI surprises!

• Us understanding what the AI is doing (Explainable)
− Not completely independent of trustworthy AI
− We need to understand what is going on before

we trust it!
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Common denominator:

AI/ML/Big Data are technologies 
ultimately used by humans

− AI does not supplant humans; it augments us
− We must be mindful of the end users of AI



Today’s Agenda

• Short presentations from INL researchers and collaborators on trustworthy 
and explainable AI

− Explainable AI Overview (DARPA)
− Explainable AI to Support Operations and Maintenance at Nuclear Power 

Plants (UTK)
− Trustworthiness Assessment of Digital Twins (NCSU)
− Trustworthy AI Guidelines for Human-System Interactions (VCU)
− Improving Explainable AI Through Process Information and Automated 

Reasoning (ANL)
− Exploring Reaction Mechanisms with Explainable AI (INL)
− Neural Networks for Control of a Subcritical Facility (MIT)

• Introductions and discussions facilitated by Dr. Nancy Lybeck, Manager for 
INL’s Instrumentation, Controls, and Data Science Department
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Approved for Public Release, Distribution Unlimited

Explainable AI (XAI)
Matt Turek, PhD
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Approved for Public Release, Distribution Unlimited 14

Explainable AI

How is it done today?

What are we trying to do?
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Explainable AI overview

Today Tomorrow

Deliver a library of toolkits

Performance - Explainability Tradeoff
(notional)
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Explainability

Deep
Learning

Random
Forests

SVMs
Bayes
Nets Decision

Trees

Future Techniques

State-of-the-art ML Techniques
(circa 2016)

Neural Nets

Statistical
Models Decision

Trees

Deep
Learning

SVMs

AOGs

Bayesian
Belief Nets

Markov 
Models

MLNs

SRL

Random
Forests

Graphical
Models

HBNsCRFs

Explainable AI Strategies

Interpretable Models
Alternative machine learning techniques that 
learn more structured, interpretable, or 
causal models

Deep Explanation
Modified or hybrid deep learning techniques 
that learn more explainable features, 
explainable representations, or explanation 
generation facilities

Model Induction
Techniques that experiment with a machine 
learning model to infer an approximate 
explainable model 

Approved for Public Release, Distribution Unlimited
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Challenge problem areas

Explains recommendations to an analyst Explains actions to an operator

Data analytics Autonomy

Microsoft insideunmannedsystems

Approved for Public Release, Distribution Unlimited



Technical strategy: address diverse DoD user types

AI Expert
Design, develop, and debug

Task SME
Test and evaluate

Developers

Does the system work well?
If not, why do these errors occur? 

• Explanations expose finer details of the system
• Explanations are used to modify/refine the system

Policymaker
Regulator

End Users/Service members Policymakers/Regulators

• Decision patterns are defensible 
• Decisions meet policy/regulatory 

requirements

• Military
• Legal
• Transportation
• Security
• Finance
• Medical

• Explanations aid decision 
making/recommendations

• Explanations justify actions 
taken and decisions

Explainable AI system users

Commander

Conceptual 
System

After Action 
Reviews

Prototype 
System

Explainable AI system development-to-use timeline (notional)

Operational 
System

System 
V&V

System Acceptance 
Testing

Regulatory 
Reviews

Gunning, D.; Stefik, M.; Choi, J.; Miller, T.; Stump, S.; Yang, G.-Z. 2019. XAI—Explainable artificial intelligence. Science Robotics 18 Dec 2019: 
Vol. 4, Issue 37, eaay7120, DOI: 10.1126/scirobotics.aay7120. 

17Approved for Public Release, Distribution Unlimited



Technical strategy: address the need for different explanation types

Klein, G.; Hoffman, R.; Mueller, S. 2019. Naturalistic Psychological Model of Explanatory Reasoning: How People Explain Things to Others and to Themselves, International Conference on Naturalistic Decision Making 2019, San Francisco, CA.

Hoffman, R.R.; Mueller, T.; Mueller, S.T.; Klein, G.; Clancey, W.J. 2018. Explaining Explanation Part 4: A Deep Dive on Deep Nets. IEEE: Intelligent Systems, pp. 87-95.

Both global and local explanations help build a robust mental model of the AI system

"How  does the AI work generally?" "Why did the AI make a particular decision?"

Potential explanation: Description of the specific evidence
“Trucks have appeared next to these bunkers in the last 24 hours”

Global Explanations

AI task: 
Automatically detect resupply activity at a military installation 

Potential explanation: Description of the AI’s learned policy for 
routing around friendly vessels

AI task: 
Automatically maneuver to a target location

Local Explanations

Help determine if an AI system is fit for purpose Help an analyst make a correct decision

Trucks

Bunkers

defense.gov

No
tio

na
l e

xa
m

pl
e

No
tio

na
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xa
m
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e

Modified from: dod.defense.gov/
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Example XAI algorithm approaches

Interpretable Models
Alternative machine learning techniques that 
learn more structured, interpretable, or 
causal models

Deep Explanation
Modified or hybrid deep learning techniques 
that learn more explainable features, 
explainable representations, or explanation 
generation facilities

Model Induction
Techniques that experiment with a machine 
learning model to infer an approximate 
explainable model 

New tractable probabilistic modeling (TPM) approach 
facilitates developer verification and validation of a 
model via sufficient and necessary explanations

Model did not use 
ball movement to 
guide decision, 
instead, it keyed in 
on pixels 
indicating whether 
it was a odd/even 
point round to 
determine the 
course of action.

Graphical representation of a TPM

Approved for Public Release, Distribution Unlimited
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Randomized Input Sampling for Explanation (RISE)
UC Berkeley

Vitali Petsiuk, Abir Das, and Kate Saenko. RISE: Randomized Input Sampling for Explanation of Black-box Models. Proceedings of the British Machine Vision Conference (BMVC), 2018.

Image from the FMoW dataset

Neural Network 
Prediction

solar farm: 63%, shopping mall: 23%

RISE Explanation for 
solar farm

RISE Explanation for 
shopping mall

solar farm: 63% shopping mall: 23%

Increasing importance
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Explanation by example

Rutgers University
Target Image Trial 1 Category A Examples Category B Examples

Approved for Public Release, Distribution Unlimited

Patrick Shafto et al., "Model Explanation by Optimal Selection of Teaching Examples," presented at the DARPA Explainable AI Meeting, Berkeley, CA, February 2019.

Explanation by selecting the subset of training data examples that are most representative of the model’s classifications

Category C Examples Category D Examples

A or B?

C or D?

Target Image Trial 2
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conv1
Raytheon BBN/MIT

David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T. Freeman, and Antonio Torralba. GAN Dissection: Visualizing and 
Understanding Generative Adversarial Networks. arXiv preprint arxiv 1811.10597, 2018.

Network Dissection - AlexNet layers for recognizing places
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Explanations can help when the answer is wrong

Raytheon BBN

Approved for Public Release, Distribution Unlimited

William Ferguson et al., "EQUAS, Explainable QUestion Answering System," presented at the DARPA Explainable AI Meeting, Berkeley, CA, February 2019.
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Unexpected brittleness of deep RL decisions

Fill line segment Random start 
position

Add line segment

Remove Enemy Shift Enemy

Charles River Analytics (CRA)
University of Massachusetts

Brown University

Value Error Reward Error

Approved for Public Release, Distribution Unlimited

Sam Witty, Jun Ki Lee, Emma Tosch, Akanksha Atrey, Michael Littman, and David Jensen (2018). Measuring and Characterizing Generalization in Deep Reinforcement Learning.

Learned policies are not robust to weak interventions



www.darpa.mil

Approved for Public Release, Distribution Unlimited 25
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Explainable AI to Support 
Operations and Maintenance at 

Nuclear Power Plants
Jamie Coble

University of Tennessee-Knoxville



O&M remains the largest addressable 
cost in nuclear energy production
• Periodic inspection and maintenance 

activities contribute to unnecessary and 
costly O&M

• Advanced reactors operate in different 
regimes than our current LWRs

• Automation of operations and 
maintenance planning can manage 
O&M costs in current and future fleets



Automation used as decision 
support for O&M decision makers
• Automation moves from 

human-in-the-loop to 
human-on-the-loop

• Questions remain about the 
trustworthiness of AI/ML 
automation

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑇𝑇𝑇𝑇𝐸𝐸𝐸𝐸𝑇𝑇𝐸𝐸𝐸𝐸𝑇𝑇𝐸𝐸𝐸𝐸𝑇𝑇 = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇



Explainable decisions increase situational 
awareness while reducing workload
• ML decisions presented 

alongside evidence 
supporting the decision

• Trust can be modeled and 
adapted based on quality of 
decision, evidence, and 
communication



Opportunities to continue 
development
• NPP-specific AI/ML R&D needs

• Algorithms to mine information from large data and big data
• Integration with faster-than-real-time O&M digital twins

• For operator acceptance
• Real-time decision reliability assessment
• HMI to display AI/ML decisions and evidence to operators 

and engineers
• For regulatory acceptance

• Uncertainty quantification and confidence assessment
• V&V methodologies



Questions?
jamie@utk.edu
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Trustworthiness Assessment of Digital Twins in 
NAMAC

Linyu Lin, Nam Dinh

Department of Nuclear Engineering
North Carolina State University
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Nearly Autonomous Management and Control (NAMAC)
• A comprehensive control system to assist 

plant operations 
• Knowledge integration

• Scenario-based model of plant (systems, success paths) 
• plant operating procedures, tech. specs., etc.
• Real-time measurements

• Not to replace human operator
• Digital twin technology

• Expressive Power of AI/ML

• NAMAC recommendations are derived from: 
• Diagnosing the plant state
• Searching for all available mitigation strategies
• Projecting the effects of actions and uncertainties into 

the future behavior
• Determining the best strategy considering plant safety, 

performance, and cost.

35



Digital Twin in NAMAC
• A hub of digital twins implemented by various machine learning algorithms to support the designated functions

36

Function Modeling

Diagnosis Recover full reactor states by assimilating plant sensor 
data with the knowledge base

Neural nets (feedforward & recurrent);
Logic programming (Answer Set Programming)

Strategy Inventory Find all available control/mitigation strategies Linear models

Prognosis Predict the transients of state variables over a time 
range Neural nets (feedforward & recurrent)

Strategy Assessment Rank possible mitigations strategies and make 
recommendations considering preference structure

Safety margin/limiting surface;
Expected utility;

Discrepancy Checker Detect unexpected transient during operations 
considering DT trustworthiness for current conditions

Distance metrics;
Logic programming (Answer Set Programming)

Integrated NAMAC To furnish recommendations to operator by assimilating 
plant sensor data with the trained policy Reinforcement Learning



Importance of Digital Twin Uncertainty
• The digital twin uncertainty affects scenarios’ future states, the modeling of 

digital twins, and the target applications

37
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Scenarios’ 
Future States

A clear future with sensitivity Alternate future with probabilities A multiplicity of plausible 
futures

Digital Twins A single set of digital twins with 
fixed form and parameter

Alternative digital twins with 
alternative forms and parameters 
where weights and uncertainties 
can be sufficiently characterized by 
probability distributions

Alternative digital twins 
with alternative forms and 
parameters where weights 
and uncertainties are 
known imprecisely

Appropriate 
target

High-consequence systems 
where decision making is 
fundamentally based on DTs, 
e.g., quantification or final 
O&M support

Moderate consequence systems 
with some reliance on DTs, e.g., 
preliminary O&M support

Low-consequence systems 
with little reliance on DTs, 
e.g., scoping studies or 
conceptual O&M support



Digital Twin Development and Assessment Process (DT-DAP)
• DT-DAP to identify major sources of 

uncertainty and to avoid biases due to 
implicitness

• The DAP is conducted iteratively, and the 
corresponding elements are refined until 
an acceptable set of DTs are delivered

Element 1: Refined requirements
Element 2: More complex and more realistic 
knowledge base
Element 3: Different machine-learning 
algorithms, hyperparameter tunning
Element 4: ML uncertainty quantification, 
software reliability analysis

38

Adopted from U.S. NRC RG 1.203 “Transient and Accident Analysis Methods”

Challenge in DT-DAP
Digital Twin Trustworthiness needs to be defined 
and evaluated in a transparent, consistent, and 
improvable manner



Looking Ahead
• There needs to be a definition for machine-learning-based 

digital twin trustworthiness and major attributes
• Accuracy, Security, Robustness, Explainability, Reliability [2]
• and more…

• The trustworthiness needs to integrate information (evidence) 
from different sources and heterogeneous types of data

• The quality of evidence could have significant impacts and 
needs to be evaluated

• The evidence integration needs to consider complex relations, 
priority, and trade-off between different attributes of 
trustworthiness

• At last, the trustworthiness assessment should be quantified 
and conducted in real-time deviation detection 39

Spider plot for the credibility assessment 
of mechanistic-based models based on 

multi-attributes evidence

0
1
2
3
4
Geom.

Phys.

Code
Ver.

Sol. Ver

Val.

UQ

Desired target level
Level achieved

An example of argumentation 
framework towards the DT 

trustworthiness goal based on 
evidence
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Questions? 
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Presenters: Chathurika S. Wickramasinghe and Daniel L. Marino
Mentor: Prof. Milos Manic, FIEEE

Virginia Commonwealth University, VA, USA

Trustworthy AI Development Guidelines 
for Human System Interactions



Abstract
• Artificial  Intelligence  (AI)  is  influencing  almost  all 

areas  of  human  life.
• Humans  still  hesitate to develop, deploy, and use AI 

systems
– deficiency of transparency (internal decision making process)

• Trustworthy AI
– diverse research area which  includes fairness,  robustness,  

explainability,  accountability,  verifiability, transparency, and 
sustainability of AI systems

• Contributions:
– Guidelines  for  building human  trust  to  improve  the  

interactions  between  human and  AI  systems
– Concise  survey  on concepts  of  trustworthy  AI

43/22



Introduction: Human AI Interactions
• Human  System  Interaction  (HSI)/  Human  AI  

interactions:
– design,  development,  and  research  on  effective 

interactions  between  humans  and  intelligent  systems
• During  AI  system  life  cycle, three main actors 

communicate with each other

44/22



Background:  AI Life Cycle (AILC) 

45/22



Background: Human System 
Interactions During AILC
• AI and Developers

– Development and  Testing,  Implementation,  
Deployment,  Scope  Changes, and Optimization phases

• AI and Users
– Implementation, Deployment, and Optimization phases

• Developers and Users
– Initiation, Concept Development and Planning, 

Implementation, and Optimization phases

46/22



Survey: Trustworthy AI
• Definition  

– Ethical principles together with formal AI system 
verification  techniques to  define  trustworthy  AI,  with  
the  common goal  of  allowing  people  and  societies  to  
develop,  deploy, and  use  AI  systems  without  fear

• High-Level  Expert  Group  on  Artificial  
Intelligence  (HLEGAI): 
– ‘Striving  towards Trustworthy  AI  concerns  not  only  

the  trustworthiness  of  the AI system itself, but requires a 
holistic and systemic approach, encompassing  the  
trustworthiness  of  all  actors  and  processes that are part 
of the system’s socio-technical context throughout its  
entire  life  cycle’

47/22



Survey: Trustworthy AI Principles

48/22



Trustworthy AI Guidelines to improve 
HSIs

49/22



Guidelines for Interaction Between AI 
and System Developers 
• Global interpretability

– analyze AI system,  right  outcomes for right reasons,  
identify course for wrong outputs, fix defects and trust the 
developed system before deployment

• Local interpretability
– adversarial  samples  and  check how the model outcome 

changes with input data changes
• Interactive visualizations

– exploring hidden patterns and  model  behaviors, take 
necessary actions efficiently

• Anomaly Detection mechanisms
– identify abnormal scenarios (data drift, or some attacker 

action), update AI systems and protect 
50/22



Guidelines for Interaction Between AI 
and System Users 
• Local interpretability

– easy enough to understand (linguistic, visual, numerical), 
build user trust,  identify incorrect conclusions, allows the 
users to question the decisions made by AI system

• Interactive visualizations
– wide range of interactive visualizations, covering large 

audience of users, easy to and safe learn and use by users
• Performance

– predictive performance,  time take to provide a product or 
service

• Diversity, non-discrimination and fairness
– should not have biases towards certain groups of people 

(age, gender, abilities, characteristics)
51/22



Guidelines for Interaction Between 
Developers and System Users 
• Define the scope of  human system interaction during 

concept development  and planning stage of  AILC
– which entities communicated during what phase, reasons for 

interactions,  data
• Define a set of rules and regulations

– agree on rules and regulations for possible  HSIs
• Privacy and Data Governance

– privacy and data related regulations
• Transparency 

– reasons for interactions,  enabling transparency properties
• Standardisation and documentation

– auditability,  transparency, traceability, and easy 
refinements when necessary

52/22



Discussion, Conclusions, and Future 
Directions
• Guidelines for improving human trust during HSIs 

are:
– context dependant, interaction dependant 

• Trustworthy AI research area acts as an umbrella 
covering diverse research directions
– global framework for trustworthy AI,

• Performance Measures for Trustworthiness
– Current measures are not enough, need new quantitative 

and qualitative measures
– Common ground for research (compare and verify)

• Removing humans entirely from the loop can harm 
the trust of humans:  AI Augmentation

53/22



Daniel L. Marino*, Javier Grandio*, Chathurika S. Wickramasinghe*,
Kyle Schroeder†, Keith Bourne†, Afroditi V. Filippas*†, Milos Manic

*Virginia Commonwealth University, VA, USA

†Commonwealth Center for Advanced Manufacturing (CCAM)

AI Augmentation for Trustworthy AI: 
Augmented Robot Teleoperation



Abstract
• Motivation: Despite the performance of AI systems,  some  sectors  

hesitate  to  adopt  AI because  of  a  lack  of  trust  in  these  systems. 
• Thesis: Use AI Augmentation as a path for building Trustworthy AI.

– Augmentation  provides  a  preferred  alternative  over  complete 
Automation.   

– Instead   of   replacing   humans,   AI   Augmentation uses  AI  to  
improve  and  support  human  operations,  creating an   
environment   where   humans   work   side   by   side   with   AI 
systems.

• What we present: 
– Design guidelines and  motivations  for  the  development  of  AI  

Augmentation  for Robot  Teleoperation.  
– The  design  of  a  Robot Teleoperation  testbed  for  the  

development  of  AI  Augmentation systems.

55/22



Trustworthy AI
• Trust: predictable behavior, even in 

the presence of uncertainty.
• Two main components:

+ Intentions
+ Competence

• Trustworthy AI: combination of 
diverse research areas on AI systems: 
+ Fairness,  robustness,  explainability,  

accountability, verifiability, transparency, 
and sustainability

+ Goals:
• Identify factors  which  harm  the  

human  trust  of  AI  systems
• Introduce methods to improve human 

trust in AI systems 

56/22

Fig. 1. Trustworthy AI Principles 
defined by the OECD



Augmented AI for Trustworthy AI
• Augmented AI: AI technologies 

working alongside humans
+ Improve productivity,  efficiency,  

quality  of  human  activities,  and  
enhance human-machine 
cognition

+ Build trust 
• Shared Autonomy 

+ Split tasks between AI and 
Humans

+ High risk decisions made by 
humans

+ Maintain Accountability in 
humans

57/22

Fig. 2. Augmentation vs Automation

Fig. 3. Building trust



Prototype for Robot Teleoperation
Robot Teleoperation:
• Provides an environment to study 

Human-Machine interactions
• Shared Autonomy is embedded in the 

field

Objective: AI Augmentation block 
– Uses feedback from multiple sensors to 

perform a commanded action with high 
success rate. 

– The AI will combine data from several 
sources in order to have a complete   
representation of the environment. 

58/22

Fig. 4. AI Augmentation for 
Teleoperation



Testbed
• Hardware:

– Universal  Robots  CB-Series  UR5
robot with  standard  controller 

– Die grinder as end effector
– 6-axis force sensor mounted to the 

wrist
– Two stereo  GigE  cameras for 

stereoscopic visualization
– Three  Intel  RealSense  D435i  

cameras for point-cloud acquisition
– Microphone

• Custom made Input device 
– Intuitive user input (Figure 6 )
– Similar kinematics to UR5 robot
– Vibration motors for haptic feedback

59/22

Fig. 5. Testbed

Fig. 6. Input Device



Augmented Reality (AR) Interface
• Rviz is used for visualization
• Virtual  objects are super-imposed in  the  scene  to  

provide  improved  situational awareness

60/22

Fig. 8. Visualization of Data



Guidelines  for  the  development  of 
Trustworthy AI Augmentation
• Prevent misuse by keeping users engaged

– Human should retain control,  actively engage in the task
• Assess uncertainty

– Ensure robustness, AI is aware of situations where there is 
not enough information to act autonomously

• Clear communication of cause-and-effect by 
effective use of the Augmented Reality interface
– Clearly communicate the actions taken by the AI, improve 

transparency,  ensure the intent of the AI 
• Clear behavior in presence of uncertainty

– Increase caution proportionally to the level of uncertainty 
and the chances of failure

61/22



Conclusions
• AI Augmentation over  full  automation  provides  a 

path  for  building  Trustworthy  AI  systems

• Developed  a  testbed  for  the  development  of  AI 
Augmented  Teleoperation
– the  hardware  setup
– the  software  stack 

• Presented  a  series  of  guidelines  for  the  
development  of Trustworthy AI Augmentation for 
Robot Teleoperation

62/22
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Thank You

Daniel Marino marinodl@vcu.edu
Prof. Milos Manic misko@ieee.org

Reference:
Paper 1: Trustworthy AI Development Guidelines for Human System Interactions
Paper 2: AI Augmentation for Trustworthy AI: Augmented Robot Teleoperation

Chathurika Wickramasinghe: brahmanacsw@vcu.edu
Daniel Marino: marinodl@vcu.edu
Prof. Milos Manic misko@ieee.org
Research Lab: Modern Heuristic Research Group (MHRG), Virginia Commonwealth University
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INTRODUCTION

 First generation AI for nuclear power plants was data-
driven (DD)

– Multivariate State Estimation (MSET-ANL) for sensor fault 
detection. Circa 1990’s.

 Installed capability today is still largely data-driven
– Advantage: One-size-fits-all (in principle)
– Disadvantage: Shallow, opaque, brittle

 On-going work aims to add in process information (domain 
knowledge)

– Physics-based (PB) knowledge can serve to further 
constrain the solution space to physical reality

– E.g., Conservation laws, constitutive equations etc. 
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Industry AI applications based largely on data-driven ML approaches



RELEVANCE TO ML/AI FUTURE

 Acceptable level of dependence on subject matter experts (SME)
– On-going work aims to add in process information (domain knowledge) in the form of physics-

based knowledge
– Utilities long ago dispensed with plant system modelers
– So, physics-based knowledge needs to be embedded in the method/software as opposed to 

being communicated by an SME

 Explainable
– Strive for an underlying reasoning process that an informed human can easily follow

 Specifiable level of granularity
– The sensor set that provides the requisite capability needs to be identifiable

 Quantifiable reliability
– The rendered output needs to be qualified as to its uncertainty
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To enable widespread application of AI, business-case must improve



EXAMPLE – FAULT DIAGNOSIS IN HP FW SYSTEM (1/4)

68
HP FW System P&ID P&ID conversion to network diagram Conversion to text-based file

Minimal dependency on SME
 Physics-based digital twin is assembled automatically from the engineered system P&ID



High explainability 
EXAMPLE – FAULT DIAGNOSIS IN HP FW SYSTEM (2/4)

 Use of automated reasoning in the diagnostic process is one way to provide an accessible 
understanding of how a diagnosis was arrived at



Requisite granularity 
EXAMPLE – FAULT DIAGNOSIS IN HP FW SYSTEM (3/4)

 Sensor set for the first-point FW heaters is sufficient to uniquely identify the requisite 
component and sensor faults
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High reliability
EXAMPLE – FAULT DIAGNOSIS IN HP FW SYSTEM (4/4)

 Diagnoses are rank ordered in terms of probability
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Challenges
LOOKING AHEAD

 Identifying the requisite sensor set
 Incorporating a mechanistic/physics-based treatment of the evolution of degradation 

processes that limit the lifetime of a component
 When degradation cannot be measured directly, then virtual indications for the state of 

degradation are needed
 Comprehensive policy for data formatting, curation, and archiving that begins with design 

of the nuclear facility information system
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Exploring reaction mechanisms 
with explainable AI.
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Catalysis Informatics Goals
• Understanding the how and why an industrial 

catalyst behaves
• Data driven mechanism understanding by 

transient kinetics
− Measuring micro-kinetic coefficients 
− Fingerprinting mechanisms of industrial 

catalysts

75Medford et al. Extracting knowledge from data through catalysis informatics. 2018
Kondratenko et al, Micro-kinetic analysis of direct N20 decomposition over steam-activated Fe-
Silicate from transient experiments in the TAP reactor, 2006 

Temporal Analysis of Products Reactor (TAP)



Link to Machine Learning

Elementary Step Rate Expression Linear Form
𝐴𝐴 +∗→ 𝐴𝐴∗ 𝑇𝑇 = 𝑘𝑘+𝐶𝐶𝐴𝐴θ 𝑇𝑇𝐴𝐴 = 𝛽𝛽 𝑁𝑁𝑘𝑘+ 𝐶𝐶𝐴𝐴 − 𝛽𝛽 𝑘𝑘+ 𝐶𝐶𝐴𝐴𝑈𝑈𝐴𝐴∗
𝐴𝐴 +∗⇌ 𝐴𝐴∗ 𝑇𝑇 = 𝑘𝑘+𝐶𝐶𝐴𝐴θ − 𝑘𝑘−𝐶𝐶𝐴𝐴∗ 𝑇𝑇𝐴𝐴 = 𝛽𝛽 𝑁𝑁𝑘𝑘+ 𝐶𝐶𝐴𝐴 − 𝛽𝛽(𝑘𝑘+)𝐶𝐶𝐴𝐴𝑈𝑈𝐴𝐴∗ − 𝛽𝛽(𝑘𝑘−)𝑈𝑈𝐴𝐴∗

𝐴𝐴 + 2 ∗→ 2𝐴𝐴∗ 𝑇𝑇 = 𝑘𝑘+𝐶𝐶𝐴𝐴 θ2 𝑇𝑇𝐴𝐴 = 𝛽𝛽 𝑁𝑁2𝑘𝑘+ 𝐶𝐶𝐴𝐴 − 𝛽𝛽 2𝑁𝑁𝑘𝑘+ 𝐶𝐶𝐴𝐴𝑈𝑈𝐴𝐴∗ + 𝛽𝛽 𝑘𝑘+ 𝐶𝐶𝐴𝐴𝑈𝑈𝐴𝐴∗
2
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U

Yablonsky et al, The Y-Procedure: How to extract the chemical transformation rate from reaction-diffusion data with 
no assumptions on the kinetic model. 2007
Yablonsky et al, Rate‐Reactivity Model: A New Theoretical Basis for Systematic Kinetic Characterization of 
Heterogeneous Catalysts, 2016

𝑇𝑇𝐴𝐴 = 𝛽𝛽 𝑁𝑁𝑘𝑘+ 𝐶𝐶𝐴𝐴 − 𝛽𝛽(𝑘𝑘+)𝐶𝐶𝐴𝐴𝑈𝑈𝐴𝐴∗ − 𝛽𝛽(𝑘𝑘−)𝑈𝑈𝐴𝐴∗ + 𝛽𝛽(𝑘𝑘+)𝑈𝑈𝐴𝐴∗
2

Ammonia Nitrogen Hydrogen



Application to Kinetic Information: via 
Penalization and Covariance Structure 
Estimation
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𝑇𝑇𝐴𝐴 = 𝛽𝛽 𝑁𝑁𝑘𝑘+ 𝐶𝐶𝐴𝐴 − 𝛽𝛽(𝑘𝑘+)𝐶𝐶𝐴𝐴𝑈𝑈𝐴𝐴∗ − 𝛽𝛽(𝑘𝑘−)𝑈𝑈𝐴𝐴∗ + 𝛽𝛽(𝑘𝑘+)𝑈𝑈𝐴𝐴∗
2

Mechanism: RMSE NPV

Irreversible (abundant sites) 0.000 1

Irreversible (limited sites N=1) 0.000 1

Irreversible (limited sites N=2.5) 0.000 1

Reversible (limited sites N=1) 0.420 1

− TAP enables data driven kinetic coefficient estimation
− Understanding about key contributors to catalyst performance
− Machine learning algorithms must be tailored to physical assumptions



Looking ahead / Challenges

• Concurrently optimizing the correlation 
structure with the linear relationships

• Developing indicators of complex 
physical phenomena

• Linking structural and kinetic 
characterization information (data fusion)

• Developing links to transition states from 
TAP kinetics

Medford et al. Extracting knowledge from data through 
catalysis informatics. 2018Deriving Understanding through the 

Combination of Physics and Experiments 
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CURRENT PROGRESS AND OPPORTUNITIES FOR XAI

This work is partially sponsored by the U.S. Department of 
Energy NEUP Award Number DE-NE0008872.



MOTIVATION FOR AUTONOMOUS CONTROL

 Critical factors for economic 
competitiveness of NPPs:
 Up-front capital cost for construction
 Day-to-day cost of plant management

 ~1 person / 2 MWe generated [1]
 O&M account for 66% of Operating costs [2]

 Autonomous control has not been 
implemented in an operating reactor or 
developed for emerging concepts [1]
 Research in universities/labs

 Need for automation
 Small modular/micro-reactors
 Current fleet
 Space exploration [3]

[1] Wood, et al., “An autonomous control framework for advanced reactors”, Nuclear Engineering and Technology, 2017.
[2] https://www.world-nuclear.org/information-library/economic-aspects/economics-of-nuclear-power.aspx 
[3] Upadhyaya, et al., “Autonomous control of space reactor systems”, DOE/ID/14589, 2007.

“NuScale researchers want to operate 12 small nuclear reactors from a single control 
room. They built a mock one in Corvallis, Oregon, to show they can do it.” Science (2019)

Current/near-term Paradigm

https://www.sciencemag.org/news/2019/02/smaller-safer-cheaper-one-company-aims-reinvent-nuclear-reactor-and-save-warming-planet


NPP CONTROL SOTA

Algorithm
 Piece-wise

mature

Demonstration
 How do we begin 

the process of 
experimentally 
demonstrating 
autonomous 
control?

Images: D. Lee, et al., “Algorithm for Autonomous Power-increase Operation Using Deep 
Reinforcement Learning and a Rule-Based System,” IEEE Access, 2020.

RL Agent Controlled 2% to 100% Power

RL Agent Controlled Systems

CVCS
Boron

CR Banks



CURRENT PROGRESS:
AUTONOMOUS CONTROL OF THE MIT GRAPHITE EXPONENTIAL PILE

 MGEP Specifications:
 90” cube
 1,288 natural uranium slugs
 Subcritical (𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 ≈ 0.8)

 Objective:
 Design and construct an 

experimental facility that can 
demonstrate an autonomous 
framework, embedding state-of-
the-art ML methods

ML Model Development: A. J. Dave, el al., “Deep Surrogate Models for 
Multi-dimensional Regression of Reactor Power,” ANS Winter Conference 
2020 (preprint: https://arxiv.org/abs/2007.05435) 

https://arxiv.org/abs/2007.05435


XAI & NPP CONTROL

Top Image: M. Turek, “Explainable Artificial Intelligence (XAI)”, 
https://www.darpa.mil/program/explainable-artificial-intelligence

 The efficacy of XAI methods hinges on two aspects:
 Development of tight coupling between ML and 

XAI methods (context aware)
 End-user traction

 Operators that might be overseeing the 
control actions made by DRL systems

 Development of an integrated XAI framework that 
has been demonstrated experimentally
 There is significant overlap in the underlying ML 

methods we will use for varying reactor designs
 collaboration via open-source development

 We need to assess human factors with end-
users, not ML experts 
 collaboration with research reactors

ML Output

Simulation
 RELAP5/MCNP
 CASL VERA/NEAMS
 Digital Twin/Reactor 

Simulator

 Deep RL Control
 Transient Classification
 Time-series forecast
 Core Optimization

Physical System
 MIT Autonomous Graphite 

Pile Data
 Research Reactor 

Operational Data
 LWR Operational Data

Training 
Data

Integrated Framework

ML Module

XAI Module
 Sensitivity analysis
 Principal component analysis
 Layer-wise propagation
 Dynamic decision tree
 Physics-based interpretability



OPPORTUNITIES
 The MGEP is an ideal starting point:

 The MGEP facility is an inherently safe system that 
poses no criticality safety risk

 Our experimental data, OpenMC model, neural network 
software, control system framework is/will be open 
sourced

 There is a pedagogical opportunity to allow students, 
researchers, and engineers to train & upload their methods 
online, and experiment without any criticality safety risk

Source code: github.com/a-jd/npsn
Install with pip: pip install npsn
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