October 13, 2021

Jacob Lehmer

Computerized Wind Farm Generation Tie Line Infrastructure Footprint Routing and Subsequent Dynamic Line Rating

Computerized Wind Farm Generation Tie Line Infrastructure Footprint Routing and Subsequent Dynamic Line Rating

Introduction

- Electrical Grid
 - Generation
 - Transmission
 - Distribution
- Modern Trends
 - Renewable Integration
 - Power Dispatching
 - Smart Grid Technologies

Transmission Route Engineering and Design

Planning

- Initial determination
- Development of alternate routes
- Public Opinion
- Prefer a route
- Line Design
- Public Opinion
- Legal Battles
- Tower Construction

Path Finding Algorithm

- Dijkstra's Algorithm
 - Discrete Mathematical Graph Traversal
- A* Algorithm
 - Dijkstra's Algorithm
 - Create the discrete graph as the application runs from cartesian grid
 - Valuation of terrain data
 - Require system bounding and rectangular grid featuring system
- TREAD Algorithm
 - Grid system defined radially, optimizes to straight line segments

Cartographic Data

- Geographic 2d representation
 - Shape Files
 - Polygonal Data
 - Line Data
 - Right of way around the line generated
 - KML Files
- 3d Data
 - GWS
- Public Opinion
- Weather Data
 - Forecasted
 - Historical

Terrain Data

- Graphical data has some effect on line construction
- Determining a reasonable value to adjust routing is a considerable issue
- Common sense routing effects can be quite reliable
 - Slopes are more difficult to construct on

Utility Integration

- Utility usage of transmission lines rely on ratings and usage planning
- Ratings are developed through static line rating calculation methods
- Generalized Line Ampacity State Solver Allows for rating transmission lines dynamically with hypothetical route
- Build possible routes from the planned wind generation capability and the location to the tie line as a basis

Not In My Backyard The Court Of Public Opinion

- All transmission routes travel across different political areas
- Some landowners do not want to have a transmission line built on their owned land
- Tread allows for these landowners to have their land marked as a no build zone
- Rapid re-development could be made that will allow for people to have their voices heard

Dynamic Line Rating

- Dynamic Line Rating (DLR) is the process of using real time conditions to change the allowed capacity of the line
- DLR can be performed in several different ways
 - On Line Sensors
 - Environmental Monitoring
 - Computational Fluid Dynamics
 - Historical Analysis
 - Requires sufficient data
 - Forecasted Data

Wind Generation and DLR Synergy

- Dynamically adjusting a transmission line requires a change in environmental conditions that allow for higher capacity
 - Reduction in temperature
 - Increase in wind speed
- Wind generation increases in generated capacity when there is an increase in wind speed
- Dynamic Line Rating can reduce curtailment of a wind plant
 Increase in generation is matched with an increase in capacity
- TREAD can use forecasted data as well as computational fluid dynamics to maximize the dynamic line rating of a possible transmission route